Statistical methods in medical research
-
Stat Methods Med Res · Aug 2018
A more efficient three-arm non-inferiority test based on pooled estimators of the homogeneous variance.
Hida and Tango established a statistical testing framework for the three-arm non-inferiority trial including a placebo with a pre-specified non-inferiority margin to overcome the shortcomings of traditional two-arm non-inferiority trials (such as having to choose the non-inferiority margin). In this paper, we propose a new method that improves their approach with respect to two aspects. ⋯ Furthermore, when that sample size was small or moderate, our simulation studies showed that our approach performed better than Hida and Tango's. Although both controlled the type I error rate, their test was more conservative and the statistical power of our test was higher.
-
Stat Methods Med Res · Aug 2018
A graphical perspective of marginal structural models: An application for the estimation of the effect of physical activity on blood pressure.
Estimating causal effects requires important prior subject-matter knowledge and, sometimes, sophisticated statistical tools. The latter is especially true when targeting the causal effect of a time-varying exposure in a longitudinal study. Marginal structural models are a relatively new class of causal models that effectively deal with the estimation of the effects of time-varying exposures. ⋯ This graph is then validated and improved utilizing structural equation models. We estimated the aforementioned causal effect using marginal structural models for repeated measures and guided the implementation of the models with the causal graph. By employing the causal graph framework, we also show the validity of fitting conditional marginal structural models for repeated measures in the context implied by our data.