Methods in molecular biology
-
Computational methods now play an integral role in modern drug discovery, and include the design and management of small molecule libraries, initial hit identification through virtual screening, optimization of the affinity and selectivity of hits, and improving the physicochemical properties of the lead compounds. In this chapter, we survey the most important data sources for the discovery of new molecular entities, and discuss the key considerations and guidelines for virtual chemical library design.
-
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. ⋯ Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
-
Amplification of the gene encoding the epidermal growth factor receptor (EGFR) occurs commonly in glioblastoma (GBM), leading to activation of downstream kinases, including phosphatidylinositol 3'-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). A serine-threonine kinase, mTOR controls cell growth by regulating mRNA translation, metabolism, and autophagy; acting as both a downstream effector and upstream regulator of PI3K. These signaling functions are distributed between at least two distinct complexes, mTORC1 and mTORC2 with respect to pathway specificity. We have investigated mTOR signaling in glioma cells with the allosteric mTORC1 inhibitor rapamycin, the mTORC1/2 inhibitor Ku-0063794, a dual PI3K/mTORC1/2 kinase inhibitor PI-103, and siRNA against raptor, rictor, or mTOR, and evaluated the value of mTOR inhibitors for the treatment of glioblastoma.
-
Central neuropathic pain is associated with many disease states including multiple sclerosis, stroke, and spinal cord injury, and is poorly managed. One type of central neuropathic pain that is particularly debilitating and challenging to treat is pain that occurs below the level of injury (below-level pain). The study of central neuropathic pain is commonly performed using animal models of stroke and spinal cord injury. ⋯ The second was developed to accommodate intrathecal application of pharmacological manipulations. This model provides an additional means by which to investigate central pain states associated with spinal cord injury, including below-level pain. Finally, a brief discussion of at-level pain measurement is described as it has been suggested in the literature that the mechanisms underlying below- and at-level pain are different.
-
Spinal cord injury-induced pain is a common clinical problem affecting adversely the quality of daily lives of spinal cord injured patients. Management with current pain medications can only lead to partial pain relief in some spinal cord injured patients, which is usually associated with unfavorable side effects. ⋯ We describe here the generation of a spinal cord contusion injury model that mimics the etiology and phenotypes of chronic pain states in spinal cord injured patients. Therefore, this model can be a useful tool for studying spinal cord injury mechanisms, functional recovery, research, and development of new medications for better functional and symptomatic improvements, including pain management.