Methods in molecular biology
-
For decades, researchers have used animal self-administration models to examine the effects drugs of abuse have on physiology and behavior. Sophisticated self-administration procedures have been developed to model many different aspects of drug addiction. ⋯ In this way, animals can hold the lever down for any duration of time thereby self-administering any dose on a continuous spectrum. This procedure eliminates some of the ambiguity in translating results from effects only observed at one unit dose and allows examination of which dose the animal "prefers" at different times.
-
Computational methods now play an integral role in modern drug discovery, and include the design and management of small molecule libraries, initial hit identification through virtual screening, optimization of the affinity and selectivity of hits, and improving the physicochemical properties of the lead compounds. In this chapter, we survey the most important data sources for the discovery of new molecular entities, and discuss the key considerations and guidelines for virtual chemical library design.
-
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. ⋯ Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
-
Amplification of the gene encoding the epidermal growth factor receptor (EGFR) occurs commonly in glioblastoma (GBM), leading to activation of downstream kinases, including phosphatidylinositol 3'-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). A serine-threonine kinase, mTOR controls cell growth by regulating mRNA translation, metabolism, and autophagy; acting as both a downstream effector and upstream regulator of PI3K. These signaling functions are distributed between at least two distinct complexes, mTORC1 and mTORC2 with respect to pathway specificity. We have investigated mTOR signaling in glioma cells with the allosteric mTORC1 inhibitor rapamycin, the mTORC1/2 inhibitor Ku-0063794, a dual PI3K/mTORC1/2 kinase inhibitor PI-103, and siRNA against raptor, rictor, or mTOR, and evaluated the value of mTOR inhibitors for the treatment of glioblastoma.
-
All investigators face the same challenge - the highly competitive nature of the grant review process. Innovation alone is not enough to ensure grant supported funding. ⋯ Therefore, specific granting mechanisms and program initiatives target translational research studies. This chapter provides grant writing tips and lists resources that may prove helpful for new investigators seeking research funding in support of translational research, biobanking, and research utilizing molecular biomarkers.