Methods in molecular biology
-
Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted Becker muscular dystrophy-like functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript. ⋯ However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, in particular phosphorodiamidate morpholino oligomers, for the targeted skipping of specific exons on the DMD gene.
-
This chapter describes the main issues that genetic epidemiologists usually consider in the design of linkage and association studies. For linkage, we briefly consider the situation of rare, highly penetrant alleles showing a disease pattern consistent with Mendelian inheritance investigated through parametric methods in large pedigrees or with autozygosity mapping in inbred families, and we then turn our focus to the most common design, affected sibling pairs, of more relevance for common, complex diseases. Theoretical and more practical power and sample size calculations are provided as a function of the strength of the genetic effect being investigated. ⋯ The estimates of locus contribution to disease risk from genome-wide scans are often biased, and relying on them might result in an underpowered replication study. Population structure has so far caused less spurious associations than initially feared, thanks to systematic ethnicity matching and application of standard quality control measures. Differential bias could be a more serious threat and must be minimised by strictly controlling all the aspects of DNA acquisition, storage, and processing.
-
Developments in psychoneuroimmunology (PNI) need to be translated into personalized medicine to achieve better clinical outcomes. One of the most critical steps in this translational process is to identify systemic biomarkers for better diagnosis and treatment. Applications of systems biology approaches in PNI would enable the insights into the correlations among various systems and different levels for the identification of the basic elements of the psychophysiological framework. ⋯ The understanding of the general systemic pathways among different disorders may contribute to the transition from the disease-centered medicine to patient-centered medicine. Integrative strategies targeting these factors and pathways would be useful for the prevention and treatment of a spectrum of diseases that share the common links. Examples of the translational implications of potential PNI biomarkers and networks in diseases including depression, Alzheimer's disease, obesity, cardiovascular disease, stroke, and HIV are discussed in details.
-
For decades, researchers have used animal self-administration models to examine the effects drugs of abuse have on physiology and behavior. Sophisticated self-administration procedures have been developed to model many different aspects of drug addiction. ⋯ In this way, animals can hold the lever down for any duration of time thereby self-administering any dose on a continuous spectrum. This procedure eliminates some of the ambiguity in translating results from effects only observed at one unit dose and allows examination of which dose the animal "prefers" at different times.
-
Psychoneuroimmunology (PNI) may provide the scientific basis for personalized and systems medicine. The exploration of the extensive interactions among psychological and behavioral factors, the nervous system, the immune system, and the endocrine system may help understand the mechanisms underlying health, wellness, and diseases. PNI theories based on systems biology methodologies may contribute to the identification of patient patterns for establishing psychological and physiological profiles for personalized medicine. ⋯ As inflammation is a critical connection among different diseases, the elucidation of the associations may contribute to the findings of systemic therapeutic targets. With the understanding of the translational implications of PNI, integrative interventions in multiple dimensions can be applied to modulate stress responses and promote healthier behaviors. These interventions include combination drug therapies, diets, nutritional supplements, meditation, and other behavioral and mind-body strategies.