Methods in molecular biology
-
Composite tissue transplantation is an emerging new era in transplant medicine and has become a viable reconstructive option for patients with large and devastating tissue defects. Advances in microsurgical techniques, transplant immunology and the development of potent immunosuppressive agents have enabled the realization of such types of transplants. ⋯ However, despite the fact that surgical, immunological and functional results are highly encouraging, the need for long-term and high-dose immunosuppression to enable graft survival and to treat/reverse acute skin rejection episodes remains a pace-limiting obstacle towards wide spread application. In this chapter we review the history and development of this novel field, the functional and immunological outcomes based on the world experience, unique biological features of such transplants, mechanisms and treatment protocols for acute skin rejection, as well as novel concepts for immune modulation and tolerance induction.
-
The search for potential drugs to treat neurodegenerative diseases has been intense in the last two decades. Among many candidates, erythropoietin (EPO) was identified as a potent protectant of neurons suffering from various adverse conditions. A wide array of literature indicates that endogenous or exogenous recombinant human erythropoietin and its variants activate cell signaling that initiates survival-promoting events in neurons and neuronal cells. ⋯ The signaling pathways involved in EPO are multiple; some are well known whereas others are still under intense investigation and few are observed in very specific cell types. It is important to note that neuronal signaling events triggered by EPO are still incomplete and require further research. Therefore, excellent review articles that explore specific EPO-signaling events are referenced.
-
The isolation of embryonic stem cells (ESCs) has furthered our understanding of normal embryonic development and fueled the progression of stem cell derived therapies. However, the generation of ESCs requires the destruction of an embryo, making the use of these cells ethically controversial. In 2006 the Yamanaka group overcame this ethical controversy when they described a protocol whereby somatic cells could be dedifferentiated into a pluripotent state following the transduction of a four transcription factor cocktail. ⋯ The fast paced field of cellular reprogramming has recently produced protocols to generate iPSCs using non integrative techniques with an ever improving efficiency. These recent developments have brought us one step closer to developing a safe and efficient method to reprogram cells for clinical use. However, a lot of work is still needed before iPSCs can be implemented in a clinical setting.
-
Animal models are important to develop therapies for individuals suffering from spinal cord injuries. For this purpose, rats are commonly preferred. ⋯ On the other hand, spinal cord is compressed or contused to mimic the human injury in blunt injury models for understanding as well as managing the secondary pathophysiologic processes following injury. Especially, contusions are thought to be biomechanically similar to vertebral fractures and/or dislocations and thus provide the most realistic experimental setting in which to test potential neuroprotective and regenerative strategies.
-
Senile plaques are an important histological hallmark of Alzheimer's disease. They mainly consist of the fibrillar peptide β-amyloid (Aβ) and are surrounded by activated microglia and astrocytes. ⋯ Stimulation of cultured primary microglia by synthetic fibrillar Aβ causes the release of IL-1β via activation of the NLRP3 inflammasome. Here we provide protocols for the preparation of primary microglial cultures and synthetic oligomeric and fibrillar forms of Aβ.