Methods in molecular biology
-
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder affecting many children. The disease is caused by the lack of dystrophin production and characterized by muscle wasting. The most common causes of death are respiratory failure and heart failure. ⋯ Here, we present methodologies to systemically inject PMOs into humanized DMD model mice and determine levels of dystrophin restoration via Western blotting. Using a tris-acetate gradient SDS gel and semi-dry transfer with three buffers, including the Concentrated Anode Buffer, Anode Buffer, and Cathode Buffer, less than 1% normal levels of dystrophin expression are easily detectable. This method is fast, easy, and sensitive enough for the detection of dystrophin from both cultured muscle cells and muscle biopsy samples.
-
The intention-to-treat analysis is the gold standard for evaluating the efficacy in a randomized controlled trial. However, when non-adherence to randomized treatments is high the actual treatment effect may be underestimated. ⋯ These analyses may include censoring at the time of co-interventions associated with stopping treatment, lag censoring which allows an additional period after discontinuation of study treatment to account for residual treatment effects, inverse probability of censoring weights (IPCW), accelerated failure time models, and contamination adjusted intent-to-treat analysis. These methods are particularly useful in assessing the "prescribed efficacy" of the study treatment, which can aid clinical decision-making .
-
The discovery of induced pluripotent stem cells (iPSCs) allows for establishment of human embryonic stem-like cells from various adult human somatic cells (e.g., fibroblasts), without the need for destruction of human embryos. This provides an unprecedented opportunity where patient-specific iPSCs can be subsequently differentiated to many cell types, e.g., cardiac cells and neurons, so that we can use these iPSC-derived cells to study patient-specific disease mechanisms and conduct drug testing and screening. Critically, these cells have unlimited therapeutic potentials, and there are many ongoing clinical trials to investigate the regenerative potentials of these iPSC-derivatives in humans. ⋯ The non-integrating mRNA reprogramming is of high efficiency, but it is sensitive to reagents and need approaches to reduce the immunogenic reaction. An alternative non-integrating and safer way of generating iPSCs is via direct delivery of recombinant cell-penetrating reprogramming proteins into the cells to be reprogrammed, but reprogramming efficiency of the protein-based approach is extremely low compared to the conventional virus-based nuclear reprogramming. Herein, we describe detailed steps for efficient generation of human iPSCs by protein-based reprogramming in combination with stimulation of the Toll-like receptor 3 (TLR3) innate immune pathway.
-
HbE/β-thalassemia is one of the most common thalassemic syndromes in Southeast Asia and Thailand. Patients have mutations in β hemoglobin (HBB) gene resulting in decreased and/or abnormal production of β hemoglobin. ⋯ This protocol provides a simple one-step genetic correction of HbE mutation in the patient-derived iPSCs. Further differentiation of the corrected iPSCs into hematopoietic stem/progenitor cells will provide an alternative renewable source of cells for the application in autologous transplantation in the future.
-
DNA methylation is a transgenerational stable epigenetic modification able to regulate gene expression and genome stability. The analysis of DNA methylation by genome-wide bisulfite sequencing become the main genomic approach to study epigenetics in many organisms; leading to standardization of the alignment and methylation call procedures. ⋯ Therefore, in this chapter we propose a computational workflow for the analysis, visualization, and interpretation of data obtained from alignment of whole genome bisulfite sequencing of plant samples. Using almost exclusively the R working environment we will examine in depth how to tackle some plant-related issues during epigenetic analysis.