Human mutation
-
Carbamoyl-phosphate synthetase I (CPS1) deficiency (CPS1D), a recessively inherited urea cycle error due to CPS1 gene mutations, causes life-threatening hyperammonemia. The disease-causing potential of missense mutations in CPS1 deficiency can be ascertained with the recombinant CPS1 expression and purification system reported here, which uses baculovirus and insect cells. We study with this system the effects of nine clinical mutations and one polymorphism on CPS1 solubility, stability, activity, and kinetic parameters for NAG. ⋯ The effects of the C-terminal domain mutations are rationalized in the light of this domain crystal structure, including the NAG site structure [Pekkala et al. Biochem J 424:211-220]. The agreement of clinical observations and in vitro findings, and the possibility to identify CPS1D patients who might benefit from specific treatment with NAG analogues because they exhibit reduced affinity for NAG highlight the value of this novel CPS1 expression/purification system.
-
To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; alpha-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include approximately 82% simple mutations and approximately 18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. ⋯ In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups.
-
Autosomal recessive LPIN1 mutations have been recently described as a novel cause of rhabdomyolysis in a few families. The purpose of the study was to evaluate the prevalence of LPIN1 mutations in patients exhibiting severe episodes of rhabdomyolysis in infancy. After exclusion of primary fatty acid oxidation disorders, LPIN1 coding sequence was determined in genomic DNA and cDNA. ⋯ This deleted human LPIN1 form was unable to complement Delta pah1 yeast for growth on glycerol, in contrast to normal LPIN1. Since more than 50% of our series harboured LPIN1 mutations, LPIN1 should be regarded as a major cause of severe myoglobinuria in early childhood. The high frequency of the intragenic LPIN1 deletion should provide a valuable criterion for fast diagnosis, prior to muscle biopsy.