Experimental dermatology
-
Experimental dermatology · Apr 2018
ReviewSystemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment.
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases that negatively affect patients' quality of life. Although distinctions exist between these diseases, both are characterized by erythematous, thickened epidermal lesions that vary in intensity and affected body surface area. Early models of aetiology attributed symptoms of both diseases to cutaneous inflammation at lesion sites, but recent studies have established that activated immune mediators in the circulation drive disease severity. ⋯ Patients with both disorders are at significantly higher risk of obesity, metabolic disorders, and cardiovascular diseases, all of which feature inflammatory components in their pathology models. These insights have led to novel therapeutics aimed at addressing psoriasis by targeting tumor necrosis factor- and Th17-related cytokine pathways. The success of these agents in psoriasis management is driving new therapeutic approaches for moderate-to-severe AD, including agents targeting the Th2 and Th17/Th22 cytokine pathways.
-
Experimental dermatology · Mar 2015
ReviewThe NET, the trap and the pathogen: neutrophil extracellular traps in cutaneous immunity.
Neutrophil extracellular traps (NETs), large chromatin structures casted with various proteins, are externalized by neutrophils upon induction by both self- and non-self-stimuli. It has become clear that NETs are potent triggers of inflammation in autoimmune skin diseases. ⋯ However, the outcome of the encounter between pathogens and NETs remains highly controversial. Here, we discuss recent insights into the morphology and formation of NETs, their role in skin inflammation and how NETs might contribute to host protection in skin infection.
-
Experimental dermatology · Jan 2014
ReviewJakpot! New small molecules in autoimmune and inflammatory diseases.
Cytokines are key mediators of the development and homeostasis of haematopoietic cells, critical for host defense, but also for the development of autoimmune and inflammatory diseases such as psoriasis or rheumatoid arthritis (RA). Blocking cytokines activity by interfering with the ligand-receptor association has been successfully employed to treat several immune disorders. A subgroup of cytokines signals through receptors requiring the association with a family of cytoplasmic protein tyrosine kinases known as Janus kinases (Jaks). ⋯ Efficacy and safety data suggest that some of these oral Jak inhibitors as well as their topical formulations may soon enter the daily clinical practice for treating patients with psoriasis, lupus erythematosus or other inflammatory skin diseases. While biologics typically target one single cytokine, these new immunomodulators can inhibit signals from multiple cytokines intra-cellularly and therefore could be useful when other therapies are ineffective. Thus, Jak inhibitors may replace some traditional immunosuppressive agents and help patients not responding to previous therapies.
-
Experimental dermatology · Jan 2014
ReviewGene therapy: pursuing restoration of dermal adhesion in recessive dystrophic epidermolysis bullosa.
The replacement of a defective gene with a fully functional copy is the goal of the most basic gene therapy. Recessive dystrophic epidermolysis bullosa (RDEB) is characterised by a lack of adhesion of the epidermis to the dermis. It is an ideal target for gene therapy as all variants of hereditary RDEB are caused by mutations in a single gene, COL7A1, coding for type VII collagen, a key component of anchoring fibrils that secure attachment of the epidermis to the dermis. ⋯ They focus on the virally mediated ex vivo correction of autologous epithelium. These corrected cells are then to be expanded and grafted onto the patient following the lead of the first successful gene therapy in dermatology being a grafting of corrected tissue for junctional EB treatment. Current progress, outstanding challenges and future directions in translating these approaches in clinics are reviewed in this article.
-
Experimental dermatology · Nov 2013
ReviewAutoreactive T cells in the immune pathogenesis of pemphigus vulgaris.
Pemphigus vulgaris is a life-threatening autoimmune blistering disease caused by anti-desmoglein IgG autoantibodies that finally lead to acantholysis presenting clinically as progressive blistering. Whilst the production of pathogenic antibodies is key to the development of pemphigus vulgaris, many immunological steps are required prior to autoantibody induction. We review advances in the understanding of these immunologic processes with a focus on human leucocyte antigen polymorphisms and antigen recognition, epitope spreading, central and peripheral tolerance, T helper differentiation, induction of pro- and anti-inflammatory cytokines and T-cell regulation of B cells. Targeting autoaggressive T cells as regulators and stimulators of B-cell antibody production should allow for more specific therapeutic immune interventions, avoiding the global immunosuppression seen with many commonly used immunosuppressants in pemphigus vulgaris.