European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Randomized Controlled Trial
Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial.
Spine surgery still remains a challenge for every spine surgeon, aware of the potential serious outcomes of misplaced instrumentation. Though many studies have highlighted that using intraoperative cone beam CT imaging and navigation systems provides higher accuracy than conventional freehand methods for placement of pedicle screws in spine surgery, few studies are concerned about how to reduce radiation exposure for patients with the use of such technology. One of the main focuses of this study is based on the ALARA principle (as low as reasonably achievable). ⋯ This study emphasizes the paramount importance of using low-dose protocols for intraoperative cone beam CT imaging coupled with the navigation system, as it at least does not affect the accuracy of pedicle screw placement and irradiates drastically less.
-
Randomized Controlled Trial Comparative Study
Comparative study of the efficacy of transdermal buprenorphine patches and prolonged-release tramadol tablets for postoperative pain control after spinal fusion surgery: a prospective, randomized controlled non-inferiority trial.
To compare the efficacy of a transdermal buprenorphine patch (5, 10, 15, and 20 μg/h) with that of oral tramadol (150, 200, 250, and 300 mg) for postoperative pain control after single level spinal fusion surgery. ⋯ The efficacy of buprenorphine TDS was not inferior to that of oral tramadol medication for alleviating postoperative pain in the subacute period from 72 h after surgery, following PCA administration. In addition, adverse events were similar between both groups.
-
Accurate and safe posterior thoracic pedicle insertion (PTPI) remains a challenge. Patient-specific drill templates (PDTs) created by rapid prototyping (RP) can assist in posterior thoracic pedicle insertion, but pose biocompatibility risks. The aims of this study were to develop alternative PDTs with computer numerical control (CNC) and assess their feasibility and accuracy in assisting PTPI. ⋯ CNC-manufactured PDTs are viable for assisting in PTPI with good feasibility and accuracy.
-
Pedicle screw stabilization, the standard technique in the thoracic and lumbar spine, is increasingly used in the cervical spine. Initial studies on the use of anterior pedicle screws (ATPS) in the cervical spine have been recently published. ATPS use has theoretical advantages over posterior stabilization. We have already established a 3D-fluoroscopy navigation setup in a study of artificial bones. The aim of the current study was to evaluate the positioning quality/accuracy of ATPS introduced to human specimens. ⋯ With 86.1% of good positioning (grade 2 or better), a 3D-fluoroscopy navigation of ATPS screws into human c-spine specimens achieved a satisfying results. These are at least comparable to results presented in the literature for posteriorly introduced subaxial pedicle screws.