European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. ⋯ In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break.
-
The objective was to determine whether any measurable changes in sensory responses, kinesthetic sense, cervical motion, and psychological features were related to established fatty infiltration values in the cervical extensor musculature in subjects with persistent whiplash. It is unknown if fatty infiltrate is related to any signs or symptoms. Data on motor function, Quantitative Sensory Testing, psychological and general well-being, and pain and disability were collected from 79 female subjects with chronic whiplash. ⋯ Combined factors of sensory, physical, kinesthetic, and psychological features all contributed to a small extent in explaining the varying levels of fatty infiltrate, with cold pain thresholds having the most influence (r (2) = 0.28; P = 0.02). Identifying and relating quantifiable muscular alterations to clinical measures in the chronic state, underpin some clinical hypotheses for possible pathophysiological processes in this group with a chronic and recalcitrant whiplash disorder. Future research investigations aimed at accurate identification, sub-classification, prediction, and management of patients with acute and chronic whiplash is warranted and underway.
-
The present method of C2 laminar screw placement relies on anatomical landmarks for screw placement. Placement of C2 laminar screws using drill template has not been described in the literature. The authors reported on their experience with placement of C2 laminar screws using a novel computer-assisted drill guide template in nine patients undergoing posterior occipito-cervical fusion. ⋯ Postoperative computed tomographic (CT) scanning was available for allowing the evaluation of placement of thirteen C2 laminar screws, all of which were in good position with no spinal canal violation. This study shows a patient-specific template technique that is easy to use, can simplify the surgical act and generates highly accurate C2 laminar screw placement. Advantages of this technology over traditional techniques include planning of the screw trajectory is done completely in the presurgical period as well as the ability to size the screw to the patient's anatomy.
-
The study design included an in vivo laboratory study. The objective of the study is to quantify the kinematics of the lumbar spinous processes in asymptomatic patients during un-restricted functional body movements with physiological weight bearing. Limited data has been reported on the motion patterns of the posterior spine elements. ⋯ During flexion the ISP distances were not significantly different than those measured in the MRI position at all segments. Going from the left to right twist positions, the L4-5 segment had greater amounts of ISP rotation, while all segments had similar ranges of translation in the transverse plane. The interspinous process distances were dependent on body posture and vertebral level.
-
Reconstruction of the highly unstable, anteriorly decompressed cervical spine poses biomechanical challenges to current stabilization strategies, including circumferential instrumented fusion, to prevent failure. To avoid secondary posterior surgery, particularly in the elderly population, while increasing primary construct rigidity of anterior-only reconstructions, the authors introduced the concept of anterior transpedicular screw (ATPS) fixation and plating. We demonstrated its morphological feasibility, its superior biomechanical pull-out characteristics compared with vertebral body screws and the accuracy of inserting ATPS using a manual fluoroscopically assisted technique. ⋯ The usage of an ECD for posterior and anterior pedicle screw tract preparation with the exclusion of dense cortical pedicles was shown to be a successful and clinically sound concept with high-accuracy rates for ATPS and pCPS. In concert with fluoroscopic guidance and pedicle axis views, application of an ECD and exclusion of dense cortical pedicles might increase comfort and safety with the clinical use of pCPS. In addition, we presented a reasonable laboratory setting for the clinical introduction of an ATPS-plate system.