Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
Immersive learning environments that use virtual simulation (VS) technology are increasingly relevant as medical learners train in an environment of restricted clinical training hours and a heightened focus on patient safety. We conducted a consensus process with a breakout group of the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change Through Health Care Simulation: Systems, Competency, and Outcomes." This group examined the current uses of VS in training and assessment, including limitations and challenges in implementing VS into medical education curricula. ⋯ Finally, we offer recommended areas of focus for future research examining VS technology for assessment, including high-stakes assessment in medical education. Specifically, we discuss needs for determination of areas of focus for VS training and assessment, development and exploration of virtual platforms, automated feedback within such platforms, and evaluation of effectiveness and validity of VS education.
-
This article on alternative markers of performance in simulation is the product of a session held during the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change Through Health Care Simulation: Systems, Competency, and Outcomes." There is a dearth of research on the use of performance markers other than checklists, holistic ratings, and behaviorally anchored rating scales in the simulation environment. Through literature review, group discussion, and consultation with experts prior to the conference, the working group defined five topics for discussion: 1) establishing a working definition for alternative markers of performance, 2) defining goals for using alternative performance markers, 3) implications for measurement when using alternative markers, identifying practical concerns related to the use of alternative performance markers, and 5) identifying potential for alternative markers of performance to validate simulation scenarios. Five research propositions also emerged and are summarized.
-
Multicenter Study Observational Study
A simulation-based approach to measuring team situational awareness in emergency medicine: A multicenter, observational study.
Team situational awareness (TSA) is critical for effective teamwork and supports dynamic decision making in unpredictable, time-pressured situations. Simulation provides a platform for developing and assessing TSA, but these efforts are limited by suboptimal measurement approaches. The objective of this study was to develop and evaluate a novel approach to TSA measurement in interprofessional emergency medicine (EM) teams. ⋯ Team situational awareness supports adaptive teams and is critical for high reliability organizations such as healthcare systems. Simulation can provide a platform for research aimed at understanding and measuring TSA. This study provides a feasible method for simulation-based assessment of TSA in interdisciplinary teams that addresses prior measure limitations and is appropriate for use in highly dynamic, uncertain situations commonly encountered in emergency department systems. Future research is needed to understand the development of and interactions between individual-, team-, and system (distributed)-level cognitive processes.
-
Computer simulation is a highly advantageous method for understanding and improving health care operations with a wide variety of possible applications. Most computer simulation studies in emergency medicine have sought to improve allocation of resources to meet demand or to assess the impact of hospital and other system policies on emergency department (ED) throughput. These models have enabled essential discoveries that can be used to improve the general structure and functioning of EDs. ⋯ In this paper, we describe conceptual advances and lessons learned during the design, parameterization, and validation of a computer simulation model constructed to evaluate changes in ED provider activity. We illustrate these concepts using examples from a study focused on the operational effects of HIV screening implementation in the ED. Presentation of our experience should emphasize the potential for application of computer simulation to study changes in health care provider activity and facilitate the progress of future investigators in this field.
-
Value-based health care requires a balancing of medical outcomes with economic value. Administrators need to understand both the clinical and the economic effects of potentially expensive simulation programs to rationalize the costs. Given the often-disparate priorities of clinical educators relative to health care administrators, justifying the value of simulation requires the use of economic analyses few physicians have been trained to conduct. ⋯ At the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes," our breakout session critically evaluated the cost-benefit and return on investment of simulation. In this paper we provide an overview of some of the economic tools that a clinician may use to present the value of simulation training to financial officers and other administrators in the economic terms they understand. We also define three themes as a call to action for research related to cost-benefit analysis in simulation as well as four specific research questions that will help guide educators and hospital leadership to make decisions on the value of simulation for their system or program.