Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
More than 30 million children are cared for across 5,000 U.S. emergency departments (EDs) each year. Most of these EDs are not facilities designed and operated solely for children. A Web-based survey provided a national and state-by-state assessment of pediatric readiness and noted a national average score was 69 on a 100-point scale. This survey noted wide variations in ED readiness with scores ranging from 61 in low-pediatric-volume EDs to 90 in the high-pediatric-volume EDs. Additionally, the mean score at the state level ranged from 57 (Wyoming) to 83 (Florida) and for individual EDs ranged from 22 to 100. The majority of prior efforts made to improve pediatric readiness have involved providing Web-based resources and online toolkits. This article reports on the first year of a program that aimed to improve pediatric readiness across community hospitals in our state through in situ simulation-based assessment facilitated by our academic medical center. The primary aim was to improve the pediatric readiness scores in the 10 participating hospitals. The secondary aim was to explore the correlation of simulation-based performance of hospital teams with pediatric readiness scores. ⋯ Our collaborative improvement program that involved simulation was associated with improvement in pediatric readiness scores in 10 EDs participating statewide. Future work will focus on further expanding of the network and establishing a national model for pediatric readiness improvement.
-
Teams are the building blocks of the healthcare system, with growing evidence linking the quality of healthcare to team effectiveness, and team effectiveness to team training. Simulation has been identified as an effective modality for team training and assessment. ⋯ The consensus process included an extensive literature review, group discussions, and the conference "workshop" involving emergency medicine physicians, medical educators, and team science experts. The objectives of this work were to: 1) explore the antecedents and processes that support team effectiveness, 2) summarize the current role of simulation in developing and understanding team effectiveness, and 3) identify research targets to further improve team-based training and assessment, with the ultimate goal of improving healthcare systems.
-
Over the past decade, emergency medicine (EM) took a lead role in healthcare simulation in part due to its demands for successful interprofessional and multidisciplinary collaboration, along with educational needs in a diverse array of cognitive and procedural skills. Simulation-based methodologies have the capacity to support training and research platforms that model micro-, meso-, and macrosystems of healthcare. To fully capitalize on the potential of simulation-based research to improve emergency healthcare delivery will require the application of rigorous methods from engineering, social science, and basic science disciplines. ⋯ This executive summary describes the overall rationale for the conference, conference planning, and consensus-building approaches and outlines the focus of the eight breakout sessions. The consensus outcomes from each breakout session are summarized in proceedings papers published in this issue of Academic Emergency Medicine. Each paper provides an overview of methodologic and knowledge gaps in simulation research and identifies future research targets aimed at improving the safety and quality of healthcare.
-
This consensus group from the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes" held in Orlando, Florida, on May 16, 2017, focused on the use of human factors (HF) and simulation in the field of emergency medicine (EM). The HF discipline is often underutilized within EM but has significant potential in improving the interface between technologies and individuals in the field. The discussion explored the domain of HF, its benefits in medicine, how simulation can be a catalyst for HF work in EM, and how EM can collaborate with HF professionals to effect change. Implementing HF in EM through health care simulation will require a demonstration of clinical and safety outcomes, advocacy to stakeholders and administrators, and establishment of structured collaborations between HF professionals and EM, such as in this breakout group.