Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. ⋯ Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges.
-
The acquisition and maintenance of individual competency is a critical component of effective emergency care systems. This article summarizes consensus working group deliberations and recommendations focusing on the topic "Simulation-based education to ensure provider competency within the healthcare system." The authors presented this work for discussion and feedback at the 2017 Academic Emergency Medicine Consensus Conference on "Catalyzing System Change Through Healthcare Simulation: Systems, Competency, and Outcomes," held on May 16, 2017, in Orlando, Florida. ⋯ This consensus subgroup focused on identifying current gaps in knowledge and process related to the use of simulation for developing, enhancing, and maintaining individual provider competency. The resulting product is a research agenda informed by expert consensus and literature review.
-
A telesimulation platform utilizes communications technology to provide mannequin-based simulation education between learners and instructors located remotely from one another. Specifically, the instructor controls the mannequin and moderates the debriefing remotely. During these sessions, the instructor observes the learners in real time and provides immediate feedback during the debriefing. ⋯ Readily available Web-conferencing, screen-sharing software, microphones, and webcams makes telesimulation possible. Mannequin-based telesimulation is relatively new and not well represented in the literature, but could facilitate systems changes, providing educational experiences to health care professionals in locations not currently benefiting from mannequin-based simulation opportunities. Several research questions need to be addressed in future studies to better develop this educational approach, including technical feasibility, logistic issues, a comparison of telesimulation to other simulation approaches, and assessing limitations of the telesimulation platform.
-
Each year over one million patients with acute heart failure (AHF) present to a United States emergency department (ED). The vast majority are hospitalized for further management. The length of stay and high postdischarge event rate in this cohort have changed little over the past decade. ⋯ This network has demonstrated, through organized collaboration between cardiology and emergency medicine, that many of the hurdles in AHF research can be overcome. The development of a network that supports the collaboration of acute care and HF researchers, combined with the availability of federally funded infrastructure, will facilitate more efficient conduct of both explanatory and pragmatic trials in AHF. Yet many important questions remain, and in this document our group of emergency medicine and cardiology investigators have identified four high-priority research areas.
-
Randomized Controlled Trial
Ideal Cricoid Pressure Is Biomechanically Impossible During Laryngoscopy.
This study was a prospective, randomized controlled trial of rapid sequence intubation (RSI) with cricoid pressure (CP) within the emergency department (ED). The primary aim of the study was to examine the link between ideal CP and the incidence of aspiration. ⋯ Laryngoscopy provides a counter force to CP, which is negated to facilitate tracheal intubation. The concept that a static 3.060 to 4.075 kg CP could be maintained during laryngoscopy and intubation was rejected by our study. Whether a lower CP range could prevent aspiration during RSI was not explored by this study.