Human brain mapping
-
Human brain mapping · Apr 2017
Disruption of rich club organisation in cerebral small vessel disease.
Cerebral small vessel disease (SVD) is an important cause of vascular cognitive impairment. Recent studies have demonstrated that structural connectivity of brain networks in SVD is disrupted. However, little is known about the extent and location of the reduced connectivity in SVD. ⋯ In discovery dataset, lower rich club connectivity was associated with lower scores on psychomotor speed (β = 0.29, P < 0.001) and executive functions (β = 0.20, P = 0.009). These results suggest that SVD is characterized by abnormal connectivity between rich club hubs in SVD and provide evidence that abnormal rich club organisation might contribute to the development of cognitive impairment in SVD. Hum Brain Mapp 38:1751-1766, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia.
This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. ⋯ These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. ⋯ In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Modular-level alterations of structure-function coupling in schizophrenia connectome.
Convergent evidences have revealed that schizophrenia is associated with brain dysconnectivity, which leads to abnormal network organization. However, discrepancies were apparent between the structural connectivity (SC) and functional connectivity (FC) studies, and the relationship between structural and functional deficits in schizophrenia remains largely unknown. In this study, resting-state functional magnetic resonance imaging and structural diffusion tensor imaging were performed in 20 patients with schizophrenia and 20 matched healthy volunteers (patients/controls = 19/17 after head motion rejection). ⋯ Moreover, significant SC-FC decoupling was demonstrated in the occipital and the subcortical modules, which was associated with longer duration of illness and more severe clinical manifestations of schizophrenia. Taken together, these findings demonstrated that altered module-dependent SC-FC coupling may underlie abnormal brain function and clinical symptoms observed in schizophrenia and highlighted the potential for using new multimodal neuroimaging biomarkers for diagnosis and severity evaluation of schizophrenia. Hum Brain Mapp 38:2008-2025, 2017. © 2017 Wiley Periodicals, Inc.
-
This work evaluates the potential in diagnostic application of a new advanced neuroimaging method, which delineates the profile of tissue properties along the corticospinal tract (CST) in amyotrophic lateral sclerosis (ALS), by means of diffusion tensor imaging (DTI). Twenty-four ALS patients and twenty-four demographically matched healthy subjects were enrolled in this study. The Automated Fiber Quantification (AFQ), a tool for the automatic reconstruction of white matter tract profiles, based on a deterministic tractography algorithm to automatically identify the CST and quantify its diffusion properties, was used. ⋯ We demonstrated that specific microstructural changes in the upper part of the brainstem might be considered as a valid biomarker. With further validations this method has the potential to be considered a promising step toward the diagnostic utility of DTI measures in ALS. Hum Brain Mapp 38:727-739, 2017. © 2016 Wiley Periodicals, Inc.