Human brain mapping
-
Human brain mapping · Apr 2017
Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. ⋯ In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Multicenter StudyClinical impact of intraoperative CCEP monitoring in evaluating the dorsal language white matter pathway.
In order to preserve postoperative language function, we recently proposed a new intraoperative method to monitor the integrity of the dorsal language pathway (arcuate fasciculus; AF) using cortico-cortical evoked potentials (CCEPs). Based on further investigations (20 patients, 21 CCEP investigations), including patients who were not suitable for awake surgery (five CCEP investigations) or those without preoperative neuroimaging data (eight CCEP investigations including four with untraceable tractography due to brain edema), we attempted to clarify the clinical impact of this new intraoperative method. ⋯ We demonstrated that (1) intraoperative dorsal language network monitoring was feasible even when patients were not suitable for awake surgery or without preoperative neuroimaging studies, (2) CCEP is a dynamic marker of functional connectivity or integrity of AF, and CCEP N1 amplitude could even become larger after reduction of brain edema, (3) a 50% CCEP N1 amplitude decline might be a cut-off value to prevent permanent language dysfunction due to impairment of AF, (4) a correspondence (<2.0 ms difference) of N1 onset latencies between CCEP and the sum of SCEPs indicates close proximity of the subcortical stimulus site to AF (<3.0 mm). Hum Brain Mapp 38:1977-1991, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Common and distinct brain networks underlying verbal and visual creativity.
Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. ⋯ Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc.
-
Human brain mapping · Apr 2017
Modular-level alterations of structure-function coupling in schizophrenia connectome.
Convergent evidences have revealed that schizophrenia is associated with brain dysconnectivity, which leads to abnormal network organization. However, discrepancies were apparent between the structural connectivity (SC) and functional connectivity (FC) studies, and the relationship between structural and functional deficits in schizophrenia remains largely unknown. In this study, resting-state functional magnetic resonance imaging and structural diffusion tensor imaging were performed in 20 patients with schizophrenia and 20 matched healthy volunteers (patients/controls = 19/17 after head motion rejection). ⋯ Moreover, significant SC-FC decoupling was demonstrated in the occipital and the subcortical modules, which was associated with longer duration of illness and more severe clinical manifestations of schizophrenia. Taken together, these findings demonstrated that altered module-dependent SC-FC coupling may underlie abnormal brain function and clinical symptoms observed in schizophrenia and highlighted the potential for using new multimodal neuroimaging biomarkers for diagnosis and severity evaluation of schizophrenia. Hum Brain Mapp 38:2008-2025, 2017. © 2017 Wiley Periodicals, Inc.
-
This work evaluates the potential in diagnostic application of a new advanced neuroimaging method, which delineates the profile of tissue properties along the corticospinal tract (CST) in amyotrophic lateral sclerosis (ALS), by means of diffusion tensor imaging (DTI). Twenty-four ALS patients and twenty-four demographically matched healthy subjects were enrolled in this study. The Automated Fiber Quantification (AFQ), a tool for the automatic reconstruction of white matter tract profiles, based on a deterministic tractography algorithm to automatically identify the CST and quantify its diffusion properties, was used. ⋯ We demonstrated that specific microstructural changes in the upper part of the brainstem might be considered as a valid biomarker. With further validations this method has the potential to be considered a promising step toward the diagnostic utility of DTI measures in ALS. Hum Brain Mapp 38:727-739, 2017. © 2016 Wiley Periodicals, Inc.