Human brain mapping
-
Human brain mapping · May 2015
Meta AnalysisDetermination of the posterior boundary of Wernicke's area based on multimodal connectivity profiles.
Wernicke's area is one of the most important language regions and has been widely studied in both basic research and clinical neurology. However, its exact anatomy has been controversial. In this study, we proposed to address the anatomy of Wernicke's area by investigating different connectivity profiles. ⋯ Anatomical connectivity, RSFC and MACM analyses consistently identified that the two anterior subregions in the posterior STG primarily participated in the language network, whereas the most posterior subregion in the temporoparietal junction area primarily participated in the default mode network. Moreover, the behavioral domain analyses, meta-analyses of semantics, execution speech and phonology and intraoperative electrical stimulation mapping also confirmed that only the two anterior subregions were involved in language processing, whereas the most posterior subregion primarily participated in social cognition. Our findings revealed a convergent posterior anatomical border for Wernicke's area and indicated that the brain's functional subregions can be identified on the basis of its specific structural and functional connectivity patterns.
-
Human brain mapping · May 2015
Meta AnalysisPain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies.
The anticipation of pain has been investigated in a variety of brain imaging studies. Importantly, today there is no clear overall picture of the areas that are involved in different studies and the exact role of these regions in pain expectation remains especially unexploited. To address this issue, we used activation likelihood estimation meta-analysis to analyze pain anticipation in several neuroimaging studies. ⋯ The results of the meta-analytic connectivity analysis provide an overall view of the brain responses triggered by the anticipation of a noxious stimulus. Such a highly distributed perceptual set of self-regulation may prime brain regions to process information where emotion, action and perception as well as their related subcategories play a central role. Not only do these findings provide important information on the neural events when anticipating pain, but also they may give a perspective into nocebo responses, whereby negative expectations may lead to pain worsening.
-
Human brain mapping · Mar 2015
Review Meta AnalysisToward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. ⋯ Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD.
-
Human brain mapping · Mar 2013
Meta AnalysisActivation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain.
Placebo analgesia (PA) is one of the most studied placebo effects. Brain imaging studies published over the last decade, using either positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), suggest that multiple brain regions may play a pivotal role in this process. However, there continues to be much debate as to which areas consistently contribute to placebo analgesia-related networks. ⋯ During expectation of analgesia, activated foci were found in the left anterior cingulate, right precentral, and lateral prefrontal cortex and in the left periaqueductal gray (PAG). During noxious stimulation, placebo-related activations were detected in the anterior cingulate and medial and lateral prefrontal cortices, in the left inferior parietal lobule and postcentral gyrus, anterior insula, thalamus, hypothalamus, PAG, and pons; deactivations were found in the left mid- and posterior cingulate cortex, superior temporal and precentral gyri, in the left anterior and right posterior insula, in the claustrum and putamen, and in the right thalamus and caudate body. Our results suggest on one hand that the modulatory cortical networks involved in PA largely overlap those involved in the regulation of emotional processes, on the other that brain nociceptive networks are downregulated in parallel with behavioral analgesia.
-
Human brain mapping · Jan 2013
Meta AnalysisLocalization of pain-related brain activation: a meta-analysis of neuroimaging data.
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. ⋯ The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.