Human brain mapping
-
Human brain mapping · Oct 2019
Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases.
Neurodegenerative disorders, such as Alzheimer's disease (AD) and progressive forms of multiple sclerosis (MS), can affect the brainstem and are associated with atrophy that can be visualized by MRI. Anatomically accurate, large-scale assessments of brainstem atrophy are challenging due to lack of automated, accurate segmentation methods. We present a novel method for brainstem volumetry using a fully-automated segmentation approach based on multi-dimensional gated recurrent units (MD-GRU), a deep learning based semantic segmentation approach employing a convolutional adaptation of gated recurrent units. ⋯ Compared to the manual gold standard, MD-GRU brainstem segmentations were more accurate than FreeSurfer segmentations (p < .001). In the multi-centric acquired AD data, the mean Dice score/SD for the MD-GRU-manual segmentation comparison was 0.97/0.006. The fully automated brainstem segmentation method MD-GRU provides accurate, highly reproducible, and robust segmentations in HC and patients with MS and AD in 200 s/scan on an Nvidia GeForce GTX 1080 GPU and shows potential for application in large and longitudinal datasets.
-
Human brain mapping · Oct 2019
Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction.
Type 2 diabetes (T2D) is associated with an accelerated episodic memory decline, but the underlying pathophysiological mechanisms are not well understood. Hallmarks of T2D comprise impairment of insulin secretion and insulin sensitivity. Insulin signaling modulates cerebral neurotransmitter activity, including the excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) systems. ⋯ Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps and memory performance was assessed using a face-profession associations test. T2D patients exhibited peripheral insulin resistance and had a decreased memory for face-profession associations as well as elevated GABA concentration in the medial prefrontal cortex but not precuneus. In addition, medial prefrontal cortex GABA concentration was negatively associated with memory performance suggesting that abnormal GABA levels in the medial prefrontal cortex are linked to the episodic memory decline that occurs in T2D patients.
-
Human brain mapping · Jun 2019
Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling.
In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. First, it is unknown whether all neurites exhibit completely anisotropic ("stick-like") diffusion. Second, the "density" of tissue components may be confounded by non-diffusion properties such as T2 relaxation. ⋯ In particular, constraining compartment-specific T2 values was ambiguous in the healthy brain and had a large impact on estimated values. In summary, estimating neurite density generally requires accounting for different diffusion and/or T2 properties between axons and dendrites. Constrained "index" parameters could be valid within limited domains that should be delineated by future studies.
-
Human brain mapping · May 2019
Clinical TrialQuantitative neuroimaging measures of myelin in the healthy brain and in multiple sclerosis.
Quantitative magnetic resonance imaging (MRI) techniques have been developed as imaging biomarkers, aiming to improve the specificity of MRI to underlying pathology compared to conventional weighted MRI. For assessing the integrity of white matter (WM), myelin, in particular, several techniques have been proposed and investigated individually. However, comparisons between these methods are lacking. ⋯ In eight WM tracts, all measures showed differences (p < 0.05) between MS normal-appearing WM and healthy control WM, with qT1 showing the highest number of different regions (8), followed by MWF-D and MTR (6), and MWF-G (n = 4). Comparing the methods in terms of their statistical sensitivity to MS lesions in WM, MWF-D demonstrated the best accuracy (p < 0.05, after multiple comparison correction). To aid future power analysis, we provide the average and standard deviation volumes of the four techniques, estimated from the healthy control sample.
-
Human brain mapping · Apr 2019
Comparative StudyWhite matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI).
Concussion pathophysiology in humans remains incompletely understood. Diffusion tensor imaging (DTI) has identified microstructural abnormalities in otherwise normal appearing brain tissue, using measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). The results of prior DTI studies suggest that acute alterations in microstructure persist beyond medical clearance to return to play (RTP), but these measures lack specificity. ⋯ Spatially extensive decreases in FA and increases in AD and RD were associated with reduced intra-neurite water volume, at both the symptomatic phase of injury and RTP, indicating that effects persist beyond medical clearance. Subsequent analyses also demonstrated that concussed athletes with higher symptom burden and a longer recovery time had greater reductions in FA and increased AD, RD, along with increased neurite dispersion. This study provides the first longitudinal evaluation of concussion from acute injury to RTP using combined DTI and NODDI, significantly enhancing our understanding of the effects of concussion on white matter microstructure.