Human brain mapping
-
Trigeminal neuralgia (TN) is a pain state characterized by intermittent unilateral pain attacks in one or several facial areas innervated by the trigeminal nerve. The somatosensory cortex is heavily involved in the perception of sensory features of pain, but it is also the primary target for thalamic input of nonpainful somatosensory information. Thus, pain and somatosensory processing are accomplished in overlapping cortical structures raising the question whether pain states are associated with alteration of somatosensory function itself. ⋯ These differences were most prominent for finger stimulation, an area not associated with TN. For lip stimulation SI and SII activations were reduced in patients with TN on the contra- but not on the ipsilateral side to the stimulus. These findings suggest a general reduction of SI and SII processing in patients with TN, indicating a long-term modulation of somatosensory function and pointing to an attempt of cortical adaptation to potentially painful stimuli.
-
Human brain mapping · Nov 2009
Control of shared representations relies on key processes involved in mental state attribution.
Action observation leads to the automatic activation of the corresponding motor representation in the observer through "mirror-matching." This constitutes a "shared representational system," which is thought to subserve social understanding by motor simulation. However, it is unclear how these shared representations can be controlled and distinguished. Brain imaging suggests that controlling shared representations, indexed by the ability to control automatic imitative responses, activates anterior fronto-median cortex (aFMC), and temporo-parietal junction (TPJ). ⋯ In the TPJ, an area overlapped between mentalizing, agency processing, and imitative control. Behavioral and neural correlates of mentalizing were further related to the individual ability for controlling imitation. Our findings support the assumption of shared key processes and suggest a novel link between embodied and social cognition.
-
Human brain mapping · Nov 2009
Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation.
There is good evidence from animal studies for segregation in the processing of non-nociceptive and nociceptive information within the trigeminal brainstem sensory nuclear complex. However, it remains unknown whether a similar segregation occurs in humans, and a recent tract tracing study suggests that this segregation may not exist. We used functional magnetic resonance imaging (fMRI) to define and compare activity patterns of the trigeminal brainstem nuclear complex during non-noxious and noxious cutaneous and non-noxious and noxious muscle orofacial stimulation in humans. ⋯ The data reveal that orofacial cutaneous and muscle nociceptive information and innocuous cutaneous stimulation are differentially represented within the trigeminal nuclear complex. It is well established that cutaneous and muscle noxious stimuli evoke different perceptual, behavioural and cardiovascular changes. We speculate that the differential activation evoked by cutaneous and muscle noxious stimuli within the trigeminal sensory complex may contribute to the neural basis for these differences.
-
Human brain mapping · Oct 2009
Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
During rest, multiple cortical brain regions are functionally linked forming resting-state networks. This high level of functional connectivity within resting-state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. ⋯ The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting-state networks. Our results show that well-known anatomical white matter tracts interconnect at least eight of the nine commonly found resting-state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal-frontal networks. Our results suggest that the functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
-
Human brain mapping · Oct 2009
Empathic neural responses to others' pain are modulated by emotional contexts.
Recent brain imaging studies indicate that empathy for pain relies upon both the affective and/or the sensorimotor nodes of the pain matrix, and empathic neural responses are modulated by stimulus reality, personal experience, and affective link with others. The current work investigated whether and how empathic neural responses are modulated by emotional contexts in which painful stimulations are perceived. ⋯ Moreover, the secondary somatosensory activity associated with the painful stimulation decreased when the painful stimulation was applied to faces with happy and painful expressions. The findings suggest that observing painful stimuli in an emotional context weakens affective responses but increases sensory responses to perceived pain and implies possible interactions between the affective and sensory components of the pain matrix during empathy for pain.