Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Polymicrobial sepsis is characterized by an early, hyperdynamic phase (i.e., 2-10 h after cecal ligation and puncture [CLP]) followed by a late, hypodynamic phase (16 h after CLP or later). Although nitric oxide (NO) plays an important role in the pathophysiologic response during sepsis, it remains unknown how early NO is upregulated after the onset of sepsis and which organs are responsible for producing the increased amount of NO. To study this, male rats were subjected to sepsis by CLP followed by fluid resuscitation. ⋯ Similarly, iNOS gene expression was upregulated in the kidneys, small intestines, and liver. Thus, the above organs appear to be important sites responsible for producing the increased NO during sepsis. Because we previously showed that the hyperdynamic response occurs as early as 2 h after CLP and because iNOS-derived NO production is not upregulated earlier than 10 h after the onset of Sepsis, it appears that factors other than NO are responsible for producing the hyperdynamic response during sepsis.
-
This study was performed to determine whether ischemia/reperfusion (I/R) injury in rat liver results in alterations in endothelin receptor expression. Hepatic ischemia was produced in rats for 60 min followed by 6 or 24 h reperfusion. Portal inflow pressure was increased (7.38+/-0.60 mmHg) at 24 hours after reperfusion. ⋯ These changes were more pronounced at 24 h after reperfusion than at 6 h. Interestingly, the changes in ET receptors was observed identically both in ischemic and non-ischemic lobes (ischemic lobe ET(A) 41.9%, ET(B) 51%; non-ischemic lobe ET(A) 38.8%, ET(B) 49.5%). These results indicate that the major functional endothelin receptor subtype upregulated in I/R is the ET(B) receptor and that this upregulation may contribute to microvascular dysregulation and hepatic injury.
-
The effect of inducible nitric oxide synthase (iNOS) inhibition on smoke inhalation injury in sheep.
Recent studies on smoke inhalation injury have been focused on nitric oxide (NO) as an essential factor of progressive lung injury. We studied the effects of inducible nitric oxide synthase (iNOS) inhibition on inhalation injury in sheep. Sheep (n = 14) were prepared surgically for chronic study. ⋯ Lung wet/dry ratios, a marker of pulmonary edema, were significantly lower in the MEG group. At 48 h after injury, lung tissue-conjugated dienes, an index of lung oxidative tissue injury, were significantly lower in the MEG group than in the control group. Our data suggest that 1) iNOS-NO produced in the airway circulation plays a major role on the significant increase in airway blood flow, which may contribute to the spread of injury from injured airway to the lung parenchyma; 2) iNOS-NO induced in the pulmonary circulation contributes to the loss of hypoxic pulmonary vasoconstriction; and 3) iNOS-NO plays an important role on the lung oxidative tissue injury.
-
Bacteria translocation from the bowel to systemic organs after burn injury may contribute to or be a cause of sepsis and multiple organ failure. The stress response confers protection under stressful conditions that would otherwise lead to cell damage or death. We investigated whether prior induction of the stress response by sodium arsenite could affect bacterial translocation after thermal injury. ⋯ Treated mice showed a significantly higher survival rate (93%) than controls (46%; P < 0.05), and detection of 111In-labeled E. coli was significantly less in the liver and spleen (P < 0.05). These data show that sodium arsenite induced HSP-70 expression in the small intestine. The stress response was associated with significantly increased survival and significant decrease in detection of 111In-labeled E. coil in the liver and spleen in a burned mouse model with gut-derived sepsis.