Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
- 
    Randomized Controlled Trial Clinical TrialGentamicin improves hemodynamics in ovine septic shock after smoke inhalation injury.Previously, our group developed an ovine model of hyperdynamic sepsis associated with acute lung injury. In this study, we sought to modify this sepsis model by the administration of gentamicin to more closely simulate the symptoms observed in human sepsis in the intensive care unit. In a prospective, controlled, randomized laboratory experiment, 18 female sheep were surgically prepared for chronic study. ⋯ In addition, the fluid requirement in the gentamicin group was significantly lower than in the control group. Pulmonary function remained stable in sham animals, but the PaO2/FiO2 ratio and shunt fraction deteriorated similarly in the control and the gentamicin groups. Because gentamicin improved hemodynamic variables and reduced the fluid requirement in this ovine model, we believe that this modified sepsis model might provide a clinically relevant and useful new approach for future studies focusing on hemodynamic variables and outcome. 
- 
    Randomized Controlled Trial Clinical TrialOxygent as a top load to colloid and hyperoxia is more effective in resuscitation from hemorrhagic shock than colloid and hyperoxia alone.Perfluorocarbon (PFC) emulsions are intravascular oxygen therapeutics that temporarily enhance tissue oxygenation in dilutional anemia. However, PFC emulsions are not resuscitation fluids because PFCs only work optimally in the presence of high O2 partial pressure (hyperoxia); moreover, because they have no oncotic potential, dosing limitations prevent their use to permanently replace large hemorrhage volumes. Our objective was to clarify whether in the presence of hyperoxia a conventional colloid therapy supplemented by PFC is more efficacious than colloid alone. ⋯ As a result, Oxygent reduced intestinal mucosal hypoxia and global O2 debt within the first hour post-therapy (P < 0.05). We conclude that under hyperoxic conditions, fluid resuscitation supplemented by Oxygent was more efficacious than colloid and hyperoxia alone. PFC temporarily enhanced intestinal mucosal tissue oxygenation during resuscitation.