Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Acute respiratory distress syndrome (ARDS) afflicts 200,000 patients annually with a mortality rate of 30% to 60% despite wide use of low tidal volume (LTV) ventilation, the present standard of care. High-permeability alveolar edema and instability occur early in the development of ARDS, before clinical signs of lung injury, and represent potential targets for therapy. We hypothesize that early application of a protective ventilation strategy (airway pressure release ventilation [APRV]) will stabilize alveoli and reduce alveolar edema, preventing the development of ARDS. ⋯ Protective ventilation with APRV immediately following injury prevents development of ARDS. Reduction in lung edema, preservation of lung E-cadherin, and surfactant protein A abundance in BALF suggest that APRV attenuates lung permeability, edema, and surfactant degradation. Protective ventilation could change the clinical paradigm from supportive care for ARDS with LTV ventilation to preventing development of ARDS with APRV.
-
Gastrointestinal bacteria and epithelia contribute to systemic inflammation and infections in critically ill patients, but the gut microbiota in these diseases has not been analyzed dynamically by molecular fingerprinting methods. This study aimed to identify ileal flora dysbiosis pattern and bacterial species that changed significantly in a rat model of intestinal ischemia and reperfusion and illustrate time courses of both epithelial alterations and gut flora variations in the same injury. Forty-eight rats were randomized into eight groups (n = 6/group). ⋯ The specific dysbiosis were characterized by Escherichia coli proliferation and Lachnospiraceae and Lactobacilli reduction. These bacteria that contributed most were identified by principal component analysis and sequencing and confirmed by real-time polymerase chain reaction. In addition, alterations of ileal microbiota followed epithelial changes in the time course of reperfusion.
-
Cholecystokinin (CCK) was first described as a gastrointestinal hormone, but its receptors have been located in cardiac and vascular tissues, as well as in immune cells. Our aims were to investigate the role of CCK on lipopolysaccharide (LPS)-induced hypotension and its ability to modulate previously reported inflammatory mediators, therefore affecting cardiovascular function. To conduct these experiments, rats had their jugular vein cannulated for drug administration, and also, the femoral artery cannulated for mean arterial pressure (MAP) and heart rate records. ⋯ Physiological CCK concentration reduced nitrite and iNOS synthesis by peritoneal macrophages, possibly through a self-regulatory IL-10-dependent mechanism. Together, these data suggest a new role for the peptide CCK in modulating MAP, possibly controlling the inflammatory response, stimulating the anti-inflammatory cytokine, IL-10, and reducing vascular and macrophage iNOS-derived nitric oxide production. Based on these findings, CCK could be used as an adjuvant therapeutic agent to improve cardiovascular function.
-
Thromboelastography (TEG) is emerging as the standard in the management of acute coagulopathies in injured patients. Although TEG is sensitive in detecting abnormalities in clot strength, one shortcoming is differentiating between fibrinogen and platelet contributions to clot integrity. Current American algorithms suggest platelet transfusion, whereas European guidelines suggest fibrinogen concentrates for correcting low clot strength. ⋯ Moreover, FF had a stronger correlation to clot strength, and increased levels were directly associated with increased percent contribution to clot strength. In vitro studies also demonstrated an increase in FF, clot strength, and percent fibrinogen contribution to clot strength with the addition of fibrinogen concentrate. These data suggest that fibrinogen should be addressed early in trauma patients manifesting acute coagulopathy of trauma.
-
Bacterial clearance is one of the most important beneficial consequences of the innate immune response. Chemokines are important mediators controlling leukocyte trafficking and activation, whereas reactive oxygen and nitrogen species are effectors in bacterial killing. In the present work, we used in vivo and in vitro models of infections to study the role of monocyte chemoattractant protein 1 (MCP-1)/CCL2 and nitric oxide (NO) in the bacterial clearance in sepsis. ⋯ Macrophages from CCL2 mice showed a consistent decrease in NO production when compared with wild-type controls after stimulation with LPS + interferon. Finally, we showed incubation of macrophages with E. coli, and the ERK inhibitor U0126 increased CFU numbers and decreased intracellular levels of NO. In conclusion, we demonstrated for the first time that MCP-1/CCL2 has a crucial role in the clearance of bacteria by mechanisms involving increased expression of inducible NO synthase and production of NO by ERK signaling pathways.