Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The majority of injury combinations in multiply injured patients entail the chest, abdomen and extremities. Numerous pig models focus on the investigation of posttraumatic pathophysiology, organ performance monitoring and on potential treatment options. Depending on the experimental question, previous authors have included isolated insults (controlled or uncontrolled hemorrhage, chest trauma) or a combination of these injuries (hemorrhage with abdominal trauma, chest trauma, traumatic brain injury and/or long bone fractures). ⋯ Therefore, a longer observation period is required to study the effects of therapeutic approaches during intensive care treatment when using animal models. These long-term studies of combined trauma models will allow the development of valuable therapeutic approaches relevant for the later posttraumatic course. This review summarizes the existing porcine models and outlines the need for long term models in order to provide real effective novel therapeutics for multiple injured patients to improve organ function and clinical outcome.
-
Dobutamine is recommended for the treatment of sepsis-related circulatory failure in international guidelines. Furthermore, dobutamine has been demonstrated to improve liver function and hepatic perfusion after experimental hemorrhagic shock. Yet, it is unknown whether dobutamine may also induce hepatoprotective effects in sepsis. ⋯ Coadministration of esmolol abolished the protective effect of dobutamine completely. Our results indicate that pretreatment with dobutamine may improve survival, liver function, and hepatic microcirculation after polymicrobial sepsis in rat via β1-adrenoceptor activation. Dobutamine could therefore play a relevant role for hepatoprotection under septic conditions.
-
Multicenter Study
Prospective comparison of three risk score models at three different surgical intensive care units.
Although risk score models are of great value, their use is restricted because of the additional effort involved. The aim of this study was to compare three different score systems. Each of these requires a different degree of effort by the medical staff. One of the score systems is solely based on routine laboratory parameters. Data were collected on three different ICUs units, with each showing a large variety in patients' health conditions. ⋯ The results of this first multicenter study comparing three risk score systems indicate that it is possible to establish a general risk score for surgical intensive care patients on admission date. Such a risk score is solely based on quality-controlled, low-cost routine laboratory parameters.
-
This study investigated the effects of heme oxygenase 1 (HO-1) on thrombomodulin (TM) and endothelial protein C receptor (EPCR) expression in sepsis-induced kidney injury. The role of HO-1 was evaluated in a cecal ligation and puncture (CLP)-induced model. Wistar rats were randomly assigned into four groups: sham, CLP, CLP + hemin (an HO-1 inducer), CLP + ZnPP (zinc protoporphyrin IX, an HO-1 inhibitor), and CLP + bilirubin. ⋯ The administration of hemin lowered the plasma levels of cystatin C, creatinine, blood urea nitrogen, tumor necrosis factor α, interleukin 1β, TM, and EPCR; elevated plasma level of activated protein C; prolonged prothrombin time and activated partial thromboplastin time; attenuated microthrombus formation; and upregulated the expression of TM and EPCR and mRNA levels of TM and EPCR in the kidney in the CLP + hemin group. In contrast, ZnPP had the opposite effects. The results indicated that the enhanced induction of HO-1 increased the expression of TM and EPCR in the kidney and exerted an anticoagulant effect, thereby attenuating kidney injury in septic rats.
-
Burn wound-related sepsis is associated with the development of systemic inflammatory response syndrome and multiple organ dysfunction syndrome (MODS). This study is aimed at investigating the development and progression of SIS and MODS in a mouse model of skin burn sepsis. C57BL/6J mice were randomly divided into the sham, burn, Pseudomonas, and burn/Pseudomonas groups. ⋯ The burn/Pseudomonas mice exhibited significantly higher levels of bacterial loads in different organs and serum endotoxin, interleukin 1β, interleukin 6, tumor necrosis factor α, and C-reactive protein than those in mice from the other groups (P < 0.05). The burn/Pseudomonas mice also displayed more severe liver, lung, and kidney tissue damage and impaired organ functions, particularly at 72 h after inoculation than did the burn and Pseudomonas groups of mice. Our data indicate that burn and P. aeruginosa infection induced severe sepsis and rapidly progressed into systemic inflammatory response syndrome and MODS in mice.