Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The majority of injury combinations in multiply injured patients entail the chest, abdomen and extremities. Numerous pig models focus on the investigation of posttraumatic pathophysiology, organ performance monitoring and on potential treatment options. Depending on the experimental question, previous authors have included isolated insults (controlled or uncontrolled hemorrhage, chest trauma) or a combination of these injuries (hemorrhage with abdominal trauma, chest trauma, traumatic brain injury and/or long bone fractures). ⋯ Therefore, a longer observation period is required to study the effects of therapeutic approaches during intensive care treatment when using animal models. These long-term studies of combined trauma models will allow the development of valuable therapeutic approaches relevant for the later posttraumatic course. This review summarizes the existing porcine models and outlines the need for long term models in order to provide real effective novel therapeutics for multiple injured patients to improve organ function and clinical outcome.
-
Dobutamine is recommended for the treatment of sepsis-related circulatory failure in international guidelines. Furthermore, dobutamine has been demonstrated to improve liver function and hepatic perfusion after experimental hemorrhagic shock. Yet, it is unknown whether dobutamine may also induce hepatoprotective effects in sepsis. ⋯ Coadministration of esmolol abolished the protective effect of dobutamine completely. Our results indicate that pretreatment with dobutamine may improve survival, liver function, and hepatic microcirculation after polymicrobial sepsis in rat via β1-adrenoceptor activation. Dobutamine could therefore play a relevant role for hepatoprotection under septic conditions.
-
Burn is one of the most common and devastating forms of trauma. Major burn injury disturbs the immune system, resulting in marked alterations in bone marrow hematopoiesis and a progressive suppression of the immune response, which are thought to contribute to increased susceptibility to secondary infections and the development of sepsis. Immunosuppression in patients with severe burn and sepsis leads to high morbidity and mortality in these patients. mononuclear phagocytes system (MPS) is a critical component of the innate immune response and plays key roles in burn immunity. ⋯ Severe burn and sepsis profoundly inhibit the functions of dendritic cells, monocytes, and macrophages. Adoptive transfer of MPS or stem cells to patients with severe burn and sepsis that aim to restore MPS function is promising. A better understanding of the roles played by MPS in the pathophysiology of severe burn and sepsis will guarantee a more rational and effective immunotherapy of patients with severe burn and sepsis.
-
Multicenter Study
Prospective comparison of three risk score models at three different surgical intensive care units.
Although risk score models are of great value, their use is restricted because of the additional effort involved. The aim of this study was to compare three different score systems. Each of these requires a different degree of effort by the medical staff. One of the score systems is solely based on routine laboratory parameters. Data were collected on three different ICUs units, with each showing a large variety in patients' health conditions. ⋯ The results of this first multicenter study comparing three risk score systems indicate that it is possible to establish a general risk score for surgical intensive care patients on admission date. Such a risk score is solely based on quality-controlled, low-cost routine laboratory parameters.
-
This study investigated the effects of heme oxygenase 1 (HO-1) on thrombomodulin (TM) and endothelial protein C receptor (EPCR) expression in sepsis-induced kidney injury. The role of HO-1 was evaluated in a cecal ligation and puncture (CLP)-induced model. Wistar rats were randomly assigned into four groups: sham, CLP, CLP + hemin (an HO-1 inducer), CLP + ZnPP (zinc protoporphyrin IX, an HO-1 inhibitor), and CLP + bilirubin. ⋯ The administration of hemin lowered the plasma levels of cystatin C, creatinine, blood urea nitrogen, tumor necrosis factor α, interleukin 1β, TM, and EPCR; elevated plasma level of activated protein C; prolonged prothrombin time and activated partial thromboplastin time; attenuated microthrombus formation; and upregulated the expression of TM and EPCR and mRNA levels of TM and EPCR in the kidney in the CLP + hemin group. In contrast, ZnPP had the opposite effects. The results indicated that the enhanced induction of HO-1 increased the expression of TM and EPCR in the kidney and exerted an anticoagulant effect, thereby attenuating kidney injury in septic rats.