Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Graded lower-body negative pressure was used to create a hemodynamic response similar to hemorrhage. Echocardiogram measurements showed a maximal reduction of 32.4% in stroke volume. ⋯ In particular, the LVET and pre-ejection period/LVET features, extracted from SCG, were significantly different between, and correlated with, the different stages of lower-body negative pressure (r = 0.9 and 0.88, P < 0.05), for 32 subjects. These results suggest a portable, cost-effective solution for identification of mild or moderate hemorrhage using accelerometers.
-
Extensively burned patients often suffer from sepsis (especially caused by Pseudomonas aeruginosa), which may prolong metabolic derangement, contribute to multiple organ failure, and increase mortality. The molecular and cellular mechanisms of such infection-related metabolic derangement and organ dysfunction are unclear. We have previously shown that severely burned patients have significant and persisting hepatic endoplasmic reticulum (ER) stress. ⋯ Our results showed that burn injury and LPS injection induced inflammasome activation in liver and augmented hepatic ER stress and liver damage. Although there was an increased metabolic demand after burn, hepatic NLRP3 inflammasome activation corresponded to inhibition of PGC-1α (peroxisome proliferator-activated receptor γ-coactivator 1α) and its upstream regulators protein kinase A catalyst unit, AMP-activated protein kinase α, and sirtuin-1 may provide a mechanism for the enhanced metabolic derangement after major burn injury plus sepsis. In conclusion, burn + LPS augments inflammasome activation and ER stress in liver, which in turn contribute to postburn metabolic derangement.
-
The development of an immunosuppressive state during the protracted course of sepsis is associated with opportunistic infections and is considered to correlate with the extent of the proinflammatory response during early sepsis. Short-term intervention with enteral lipid-rich nutrition was shown to attenuate the acute inflammatory response. This study investigates the effects of lipid-rich nutrition on the immunosuppression induced by polymicrobial sepsis. ⋯ Lipid-rich nutrition prevented the increase in bacteria, promoted the IL-12 and IFN-γ production (IL-12 and IFN-γ [P < 0.05] vs. fasted and IFN-γ [P < 0.05] vs. control nutrition), and prevented the expression of the immunosuppressive cytokine IL-10 (P < 0.05 vs. control nutrition) in lungs of CLP mice. The preserved immune defense during late sepsis in lipid-rich fed mice was preceded by attenuation of the early inflammatory response (IL-6 [P = 0.05] and IL-10 [P < 0.01] vs. fasted CLP mice) at 6 h after CLP. In conclusion, short-term treatment with lipid-rich enteral nutrition improves the pulmonary antimicrobial defense during polymicrobial sepsis.
-
Gender-oriented studies in shock, trauma, and/or sepsis require accurate monitoring of hormonal fluctuations as estrogens may influence various end points. Yet, monitoring is challenging in small laboratory animals: e.g., despite its subjectivity, vaginal smears are the major method for determination of estrus cycle phases in mice. Using female mice of different age, we aimed to (a) characterize general age-related changes in systemic estrogens and (b) examine the utility of determination of the estrus cycle by vaginal smears and/or impedance simultaneously comparing them with oscillation of systemic estrogens. ⋯ In conclusion, while the fecal estrogens oscillation and frequency of estrus phase were affected by age, the systemic hormone release persisted. In mice, vaginal cytology did not reflect changes of systemic (fecal) estrogens, whereas impedance accurately identified estrus. The flaws and advantages of the examined monitoring methods should be considered in the design of future shock studies.
-
Hemorrhagic shock (HS) can initiate an exaggerated systemic inflammatory response and multiple organ failure, especially if followed by a subsequent inflammatory insult ("second hit"). We have recently shown that histone deacetylase inhibitors can improve survival in rodent models of HS or septic shock, individually. In the present study, we examined whether valproic acid (VPA), a histone deacetylase inhibitor, could prolong survival in a rodent "two-hit" model: HS followed by septic shock from cecal ligation and puncture (CLP). ⋯ We have demonstrated that VPA treatment improves survival and attenuates inflammation in a rodent two-hit model.