Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Comparative Study Clinical Trial
Racial Differences in Vasopressor Requirements For Septic Shock.
The objective of this study was to compare vasopressor requirements between African American (AA) patients and white patients in septic shock. ⋯ African American patients with septic shock were treated with higher doses of NE and required longer duration of NE administration compared with white patients.
-
Randomized Controlled Trial
Infusion of 7.2% NaCl/6% Hydroxyethyl Starch 200/0.5 in On-Pump Coronary Artery Bypass Surgery Patients: A Randomized, Single-Blind Pilot Study.
NaCl 7.2%/6% hydroxyethyl starch (HES) 200/0.5 (HSH) has shown its beneficial effects in cardiac surgery and immunomodulatory values in experiment and human studies. However, there is concern regarding detrimental renal effects of chloride and HES in the intensive care setting. ⋯ NaCl 7.2%/6% hydroxyethyl starch 200/0.5 does not lead to the increase in AKI incidence when used for the volume therapy in on-pump coronary artery bypass surgery patients. NaCl 7.2%/6% hydroxyethyl starch 200/0.5 usage enhanced neither tubular injury nor alteration of glomerular filtration. In addition, HSH can reduce the level of the inflammatory mediators after surgery.
-
Intra-abdominal hypertension/abdominal compartment syndrome (IAH/ACS) is a well-recognized entity among surgical subspecialties. Nevertheless, it has been proven to be present in the medical critically ill population. Prospective and retrospective observational studies have found medical patients with IAH/ACS to be associated with death in the intensive care unit and other poor outcomes. ⋯ Furthermore, they are less likely to receive treatment targeted at lowering intra-abdominal pressure. Medical treatment of IAH/ACS has not been demonstrated to be specifically effective to avoid decompressive surgery. Identifying medical patients at risk of IAH represents an underresearched area for which training in measurement of abdominal pressure surrogates, awareness of its prevalence, and prevention and treatment of such condition could further improve outcomes in critically ill medical patients.
-
Intestinal ischemia and reperfusion (intestinal I/R) causes acute lung inflammation that is characterized by leukocyte migration, increased lung microvascular permeability, and, in severe forms, noncardiogenic pulmonary edema and acute respiratory distress syndrome. Female sex hormones interfere with immune response, and experimental and clinical evidence shows that females are more resistant than males to organ injury caused by gut trauma. To reduce the lung inflammation caused by intestinal I/R, we have acutely treated male rats with estradiol. ⋯ The treatment with E2 did not affect NOx concentration. Taken together, our data suggest that estradiol modulates the lung inflammatory response induced by lung injury, likely by acute effects. Thus, acute estradiol treatment could be considered as a potential therapeutic agent in ischemic events.
-
In septic shock (SS), dysfunction of many organ systems develops during the course of the illness, although the mechanisms are not clear. In earlier studies, we reported that lysozyme-c (Lzm-S), a protein that is released from leukocytes and macrophages, was a mediator of the myocardial depression and vasodilation that develop in a canine model of Pseudomonas aeruginosa SS. Whereas both of these effects of Lzm-S are dependent on its ability to intrinsically generate hydrogen peroxide, we subsequently showed that Lzm-S can also deposit within the vascular smooth muscle layer of the systemic arteries in this model. ⋯ In the in vivo model, Lzm-S accumulated in the kidney and the superior mesenteric artery. In a canine renal epithelial preparation, we further showed that Lzm-S can be taken up by the renal tubules to activate inflammatory pathways. We conclude that Lzm-S can deposit in the systemic vasculature and kidneys in SS, where this deposition could lead to acute organ dysfunction.