Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. ⋯ Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.
-
Hemorrhagic shock resulting from blood loss directs the majority of the blood to the vital organs, dramatically reducing blood flow to the intestines and resulting in damage and inflammation. The excessive intestinal inflammatory response includes pro-inflammatory cytokines and complement activation, although the mechanism is not clear. Toll-like receptors play a vital role in the innate immune response and toll-like receptor 2 (TLR2) is required for intestinal ischemia/reperfusion-induced injury. ⋯ Two hours after blood removal, the intestinal injury and inflammation were assessed. We demonstrate that compared with wild-type control mice, Tlr2(-/-) mice sustain less intestinal damage and inflammation. Importantly, TLR2 regulated eicosanoid and complement activation and IL-12 and TNFα secretions, indicating interactions between TLR2 and complement in response to significant blood loss.
-
This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. ⋯ The partial protective effects of AP39 correlated with a partial improvement of kidney histological scores and reduced TUNEL staining (an indicator of DNA damage and apoptosis). In summary, the mitochondria-targeted H2S donor AP39 exerted dose-dependent protective effects against renal epithelial cell injury in vitro and renal ischemia-reperfusion injury in vivo. We hypothesize that the beneficial actions of AP39 are related to the reduction of cellular oxidative stress, and subsequent attenuation of various positive feed-forward cycles of inflammatory and oxidative processes.
-
We evaluated central venous oxygen saturation (Scvo2) and lactate levels as a combination measure to predict mortality in patients with severe sepsis or septic shock. ⋯ Oxygenation category, as represented by initial Scvo2 and lactate levels, was significantly associated with 28-day mortality in patients with severe sepsis or septic shock. Associations between Scvo2 ≥70% and 28-day survival were observed only in patients without severe lactic acidosis.
-
The lipopolysaccharide (LPS) molecule is composed of a hydrophobic lipid region (Lipid A), an oligosaccharide core, and an O-Antigen chain. Lipid A has been described as the molecular region responsible for inducing activation of immune cells. We hypothesize that the O-Antigen plays a critical role in the activation and responsiveness of mononuclear cell immune function. ⋯ Structural variants of LPS activate monocytes differentially. The complete O-Antigen is important for maximal activation of MAPK, cytokine synthesis, and cytokine secretion. LPS with attenuated O-Antigen and Lipid A activate only certain components of these pathways. LPS with a complete O-Antigen stimulates cytokine secretion that is partially independent of CD14, but shortening or removal of the O-Antigen inhibits this secretion.