Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Danger-associated molecular patterns (DAMPs) that are released by injured, threatened, or dead cells, or that originate from the extracellular matrix, influence the immune system. This is of great relevance in critically ill patients, in whom trauma or surgery-related cell damage, hypoxia, ischemia, and infections can result in extensive release of DAMPs. ⋯ In the present review, we provide an overview of several well known DAMPs (high-mobility group box 1, heat-shock proteins, s100 proteins, nucleic acids, and hyaluronan) and their effects on the immune system. Furthermore, we discuss the role of DAMPs as markers or therapeutic targets in several conditions frequently encountered in critically ill patients, such as sepsis, trauma, ventilator-induced lung injury, and cardiac arrest.
-
Sepsis-induced multiple organ dysfunction syndrome (MODS) is a major cause of morbidity and mortality in critically ill patients and remains impervious to most therapeutic interventions. We utilized a clinically relevant murine model of systemic inflammatory response syndrome (SIRS) during early MODS induced by ventilator-associated pneumonia to systematically delineate pathways dysregulated in lung, liver, and kidney. ⋯ Our analyses led to the identification of several putative drivers of early MODS whose expression was regulated by epidermal growth factor receptor. Our unbiased, integrative method is a promising approach to unravel mechanisms in system-wide disorders afflicting multiple compartments such as sepsis-induced MODS, and identify putative therapeutic targets.
-
Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. ⋯ After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (-28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection.
-
The pathophysiology of burn injuries is tremendously complex. A thorough understanding is essential for correct treatment of the burned area and also to limit the appearance of organ dysfunction, which, in fact, is a key determinant of morbidity and mortality. ⋯ Research into biomarkers may help to improve the prognosis of patients with severe burn injury. The aim of the present clinical review is to discuss new evidence of the value of biomarkers in this setting.