Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Our goal is to determine the prognostic value of serum N-terminal prohormone of brain natriuretic peptide (NT-proBNP), leukocytosis, and hyperglycemia in patients with severe hand, foot, and mouth disease (HFMD). ⋯ Routine admission surveillance for NT-proBNP is useful for identifying patients with HFMD at risk for mortality. Further studies are needed to determine whether early intervention in patients with highly elevated NT-proBNP can improve outcome.
-
Translating murine data to the human situation, we proposed that the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in T cells from septic patients correlates with clinical outcome. In this preliminary report, we analyzed PPARγ mRNA expression in CD3 T cells derived from blood of a very small number of septic patients (n = 18) on various days up to 2 weeks after the initial diagnosis. CD3 T cell count was determined by flow cytometry. ⋯ Setting two arbitrary limits: patients with a PPARγ expression in T cells higher than 7,000 copies/25 ng mRNA, of whom five of six patients died during the ICU stay, and patients with a T cell count below 100 T cells/μL blood, of whom five of eight patients died, we identified a correlation between sepsis survival and low T cell number, paired with high T cell-specific PPARγ expression. Among all 18 sepsis patients, four fulfilled the criteria for both arbitrary settings and all four of these patients subsequently died. We suggest that both high PPARγ expression in T cells and low absolute T cell number in blood of septic patients may have the potential as a new prognostic marker for a poor sepsis outcome.
-
The mechanisms involved in septic anorexia are mainly related to the secretion of inflammatory cytokines. The term endozepines designates a family of neuropeptides, including the octadecaneuropeptide (ODN), originally isolated as endogenous ligands of benzodiazepine receptors. Previous data showed that ODN, produced and released by astrocytes, is a potent anorexigenic peptide. We have studied the effect of sepsis by means of a model of cecal ligation and puncture (CLP) on the hypothalamic expression of endozepines (DBI mRNA and protein levels), as well as on the level of neuropeptides controlling energy homeostasis mRNAs: pro-opiomelanocortin, neuropeptide Y, and corticotropin-releasing hormone. In addition, we have investigated the effects of two inflammatory cytokines, TNF-α and IL-1β, on DBI mRNA levels in cultured rat astrocytes. ⋯ These results suggest that during sepsis, hypothalamic mRNA encoding endozepines, anorexigenic peptide as well as stress hormone could play a role in the anorexia/cachexia associated with inflammation due to sepsis and we suggest that this hypothalamic mRNA expression could involve TNF-α.
-
Sepsis remains an important cause of mortality worldwide, and early deaths resulting from overwhelming inflammation in septic patients have been reported. Vigorous immune reactions are beneficial for bacterial clearance in this circumstance but at the price of self-tissue damage. Mesenchymal stem cells (MSCs) have been found to modulate immune function and attenuate sepsis. ⋯ Serum levels of TNF-α, MCP-1, IFN-γ, and IL-6 were significantly lower and IL-10 significantly higher 6 h after CLP in the mice receiving UCMSCs compared with those receiving PBS only. Our study provides the first in vivo evidence for the association of the MyD88-NFκB pathway and MSC-mediated immunomodulation during sepsis. The immunomodulatory effect of UCMSCs was noted from 3 to 6 h after injection, and the MyD88-NFκB pathway played an important role in response to the immunomodulatory signals from UCMSCs.
-
Lipopolysaccharide (LPS) is known to induce vascular derangements. The pathophysiology involved therein is unknown, but matrix metalloproteinases (MMPs) may be an important mediator. We hypothesized that in vitro LPS provokes vascular permeability, damages endothelial structural proteins, and increases MMP activity; that in vivo LPS increases permeability and fluid requirements; and that the MMP inhibitor doxycycline mitigates such changes. ⋯ We conclude that LPS increases permeability, damages structural proteins, and increases MMP-9 activity in endothelial cells. Additionally, endotoxemia induces hyperpermeability and increases the amount of IV fluid required to maintain normotension in vivo. Doxycycline mitigates such changes both in vitro and in vivo. Our findings illuminate the possible role of matrix metalloproteinases in the pathophysiology of lipopolysaccharide-induced microvascular hyperpermeability and pave the way for better understanding and treatment of this process.