Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is the main cause of close to 70% of all cases of acute respiratory distress syndromes (ARDS). In addition, sepsis increases susceptibility to ventilator-induced lung injury. Therefore, the development of a ventilatory strategy that can achieve adequate oxygenation without injuring the lungs is highly sought after for patients with acute infection and represents an important therapeutic window to improve patient care. ⋯ Consequently, most of the recommendations regarding mechanical ventilation in sepsis patients are derived from ARDS trials that included multiple clinical diagnoses. While there have been important improvements in general ventilatory management that should apply to all critically ill patients, sepsis-related lung injury might still have particularities that could influence bedside management. After revisiting the interplay between sepsis and ventilation-induced lung injury, this review will reappraise the evidence for the major components of the lung protective ventilation strategy, emphasizing the particularities of sepsis-related acute lung injury.
-
Fluid resuscitation plays a fundamental role in the treatment of septic shock. Administration of inappropriately large quantities of fluid may lead to volume overload, which is increasingly recognized as an independent risk factor for morbidity and mortality in critical illness. ⋯ In fact, achievement of a negative fluid balance during treatment of sepsis is associated with better outcomes. This review will discuss the relationship between fluid overload and unfavorable outcomes in sepsis, and how fluid overload can be prevented and managed.
-
Review Meta Analysis
Prevention or Treatment of Ards With Aspirin: A Review of Preclinical Models and Meta-Analysis of Clinical Studies.
The acute respiratory distress syndrome (ARDS) is a life-threating disorder that contributes significantly to critical illness. No specific pharmacological interventions directed at lung injury itself have proven effective in improving outcome of patients with ARDS. Platelet activation was identified as a key component in ARDS pathophysiology and may provide an opportunity for preventive and therapeutic strategies. We hypothesize that use of acetyl salicylic acid (ASA) may prevent and/or attenuate lung injury. ⋯ This systematic review of preclinical studies and meta-analysis of clinical studies suggests a beneficial role for ASA in ARDS prevention and treatment. However, the currently available data is insufficient to justify an indication for ASA in ARDS. The body of literature does support further studies in humans. We suggest clinical trials in which the mechanisms of action of ASA in lung injury models are being evaluated to guide optimal timing and dose, before prospective randomized trials.
-
For decades, corticosteroids are proposed as adjuvant therapies for severe infections. Despite mounting evidence from randomized controlled trials, there is still an intense debate regarding the role of systemic low-dose corticosteroids as a part of the treatment of septic shock. In the present article, we review the current literature and detail aspects on the pathophysiologic rationale, the current evidence, actual practice, and future directions on this topic.
-
Sepsis is a systemic inflammatory response caused by infection whose molecular mechanisms are still not completely understood. The early detection of sepsis remains a great challenge for clinicians because no single biomarker capable of its reliable prediction, hence, delayed diagnosis frequently undermines treatment efforts, thereby contributing to high mortality. There are several experimental approaches used to reveal the molecular mechanism of sepsis progression. ⋯ Recent advancement in liquid chromatography-based separation methods and mass spectrometers resolution and sensitivity with absolute quantitation methods, made possible to use proteomics as a powerful tool for study of clinical samples with higher coverage proteome profiles. In recent years, number of proteomic studies have been done under sepsis and/or in response to endotoxin and showed various signaling pathways, functions, and biomarkers. This review enlightened the proteomic progress in the last decade in sepsis.