Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Increased endothelial cell adhesion molecule (ECAM) expression, leukocyte-endothelial cell adhesive interactions (LECA), platelet-endothelial cell adhesion (PECA), mast cell activation, production of reactive oxygen species (ROS), and microvascular permeability are hallmarks of the inflammatory response. The infiltration of inflammatory phagocytes is associated with myeloperoxidase (MPO)-dependent production of hypochlorous acid, a reactive chlorinating species that targets membrane lipids to produce halogenated lipids such as 2-chlorohexadecanal (2-ClHDA) and 2-chloropalmitic acid (2-ClPA). Whether these chlorinated lipids contribute to microcirculatory dysfunction is largely unknown. ⋯ Following the addition of either 2-ClPA or 2-ClHDA to the culture medium, HIMVEC displayed increased platelet and neutrophil adherence that was associated with elevated expression of ECAMs and increased permeability. In vivo, chlorinated lipid exposure significantly increased LECA, PECA, ROS production, and albumin leakage, inflammatory events that were associated with mast cell activation and increased tissue MPO activity and expression. Our data provide proof-of-principle that 2-ClPA and 2-ClHDA induce powerful proinflammatory responses both in vitro and in vivo, suggesting the possibility that these chlorinated lipid products of the MPO/ hydrogen peroxide /chloride system may contribute to inflammation noted in neutrophil-dependent, myeloperoxidase-mediated pathologic states such as ischemia/reperfusion, hemorrhagic shock, and sepsis.
-
Ischemia/reperfusion (I/R) injury is a common occurrence resulting from acute mesenteric ischemia, traumatic or septic shock, burns, and surgical procedures that can lead to multiple organ failure and high mortality in critically ill patients. Mitochondria are often considered the cellular power factory via their capacity for ATP generation. ⋯ In addition, when mtDNA is released into the cytoplasm, extracellular milieu, or circulation, it can activate multiple pattern-recognition receptors to trigger type I interferon and pro-inflammatory responses. Here, we review the emerging role of mtDNA in I/R injury to highlight novel mechanistic insights and discuss the pathophysiological relevance of mitochondrial biology.
-
Trauma-induced hemorrhagic shock (HS) plays a decisive role in the development of immune, coagulation, and organ dysfunction often resulting in a poor clinical outcome. Imbalanced complement activation is intricately associated with the molecular danger response and organ damage after HS. Thus, inhibition of the central complement component C3 as turnstile of both inflammation and coagulation is hypothesized as a rational strategy to improve the clinical course after HS. ⋯ Furthermore, early systemic inflammation and coagulation dysfunction were both ameliorated by Cp40. The data suggest that therapeutic inhibition of C3 is capable to significantly improve immune, coagulation, and organ function and to preserve organ-barrier integrity early after traumatic HS. C3-targeted complement inhibition may therefore reflect a promising therapeutic strategy in fighting fatal consequences of HS.
-
Clinical Trial Observational Study
Etiology of Shock in the Emergency Department; A 12 Year Population Based Cohort Study.
The knowledge of the etiology and associated mortality of undifferentiated shock in the emergency department (ED) is limited. We aimed to describe the etiology-based proportions and incidence rates (IR) of shock, as well as the associated mortality in the ED. ⋯ HS and SS are frequent etiological characteristics followed by NS and CS, whereas OS is a rare condition. We confirm the increasing trend of SS, as previously reported. Seven-day mortality ranged from 12.7% to 34.6%, while 90-day mortality ranged from 22.6% to 56.2%. The underlying etiology was an independent predictor of mortality.
-
Clinical Trial
Septic Shock Alters Mitochondrial Respiration of Lymphoid Cell-Lines and Human Peripheral Blood Mononuclear Cells: The Role of Plasma.
In septic shock patients, postseptic immunosuppression state after the systemic inflammatory response syndrome is responsible for nosocomial infections, with subsequent increased mortality. The aim of the present study was to assess the underlying cellular mechanisms of the postseptic immunosuppression state, by investigating mitochondrial functions of peripheral blood mononuclear cells (PBMCs) from septic shock patients over 7 days. ⋯ Septic plasma impairs mitochondrial respiration in immune cells, with a possible role of the proinflammatory protein HMGB1, leading to a subsequent compensation, probably by enzymatic activation. This compensation result is an improvement of global mitochondrial respiratory capacity, but without restoring ATP-synthase activity.