Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Studies have shown that remote ischemic post-conditioning can improve brain damage caused by ischemia and hypoxia. However, the specific mechanism underlying this phenomenon is still unclear. The purpose of this study was to investigate the effects of remote ischemic post-conditioning on neuronal apoptosis and mitophagy after cardiopulmonary resuscitation (CPR) in rats. ⋯ Taken together, our results show that remote ischemic post-conditioning improves neural function after CPR by inhibiting P53 mitochondrial translocation-induced apoptosis and Parkin-mediated mitophagy.
-
Intra-abdominal hypertension (IAH), the leading complication in the intensive care unit, significantly disturbs the gut microbial composition by decreasing the relative abundance of Lactobacillus and increasing the relative abundance of opportunistic infectious bacteria. ⋯ Seven-day pretreatment with a single-species probiotics can prevent IAH-induced severe intestinal barrier dysfunction, potentially through microbial modulation.
-
Macrophage, as an integral component of the immune system and the first responder to local damage, is on the front line of defense against infection. Over the past century, the prevailing view of macrophage origin states that all macrophage populations resided in tissues are terminally differentiated and replenished by monocytes from bone-marrow progenitors. Nonetheless, this theory has been reformed by ground-breaking discoveries from the past decades. ⋯ Moreover, multiple lines of evidence have indicated that tissue-resident macrophages play critical roles in maintaining tissue homeostasis and facilitating tissue repair through controlling infection and resolving inflammation. In this review, we summarize the properties of resident macrophages in the lung, spleen, and heart, and further highlight the impact of TRM populations on inflammation control and tissue repair. We also discuss the potential role of local proliferation in maintaining a physiologically stable TRM pool in response to acute inflammation.
-
Acute myocardial infarction (AMI) remains a major cause of mortality and morbidity, and cardiogenic shock (CS) a major cause of hospital mortality after AMI. Especially for ST elevation myocardial infarction (STEMI) patients, fast intervention is essential.Few proteins have proven clinically applicable for AMI. Most proposed biomarkers are based on a priori hypothesis-driven studies of single proteins, not enabling identification of novel candidates. For clinical use, the ability to predict AMI is important; however, studies of proteins in prediction models are surprisingly scarce.Consequently, we applied proteome data for identifying proteins associated with definitive STEMI, CS, and all-cause mortality after admission, and examined the ability of the proteins to predict these outcomes. ⋯ The association analyses propose individual proteins as putative protein biomarkers for definitive STEMI and survival after suspected STEMI, while the prediction models put forward sets of proteins with putative predicting ability of CS and survival. These proteins may be verified as biomarkers of potential clinical relevance.
-
Severe heat stroke is a clinical syndrome caused by host stress dysfunction due to heat stress and subsequent life-threatening organ dysfunction. We aimed to explore the early risk factors affecting the 90-day prognosis of severe heat stroke patients. ⋯ The longer the cooling duration, the faster the heart rate at admission, and the higher the SOFA score, the lower the 90-day survival rate was. These three indicators can be used in combination to predict 90-day mortality and poor prognosis in patients with severe heat stroke.