Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Randomized Controlled Trial
Modulation of LTCC Pathways by A Melusin Mimetic Increases Ventricular Contractility During LPS-Induced Cardiomyopathy.
Sepsis-induced cardiomyopathy is commonplace and carries an increased risk of death. Melusin, a cardiac muscle-specific chaperone, exerts cardioprotective function under varied stressful conditions through activation of the AKT pathway. The objective of this study was to determine the role of melusin in the pathogenesis of lipopolysaccharide (LPS)-induced cardiac dysfunction and to explore its signaling pathway for the identification of putative therapeutic targets. ⋯ This study identifies AKT / Melusin as a key pathway for preserving cardiac function following LPS challenge. The cell-permeable mimetic peptide (R7W-MP) represents a putative therapeutic for sepsis-induced cardiomyopathy.
-
Nitrosative stress is widely involved in cell injury via inducing the nitration modification of a variety of proteins. This study aimed to investigate whether inhibition of nitrosative stress attenuated myocardial injury and improved outcomes in a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). ⋯ Inhibition of nitrosative stress is a novel molecular target to alleviate myocardial injury and improve outcomes in a rat model of CA/CPR.
-
Selective aortic arch perfusion (SAAP) is an endovascular technique that consists of aortic occlusion with perfusion of the coronary and cerebral circulation. It been shown to facilitate return of spontaneous circulation (ROSC) after exanguination cardiac arrest (ECA), but it is not known how long arrest may last before the myocardium can no longer be durably recovered. The aim of this study is to assess the myocardial tolerance to exsanguination cardiac arrest before successful ROSC with SAAP. ⋯ Whole blood SAAP can accomplish ROSC at high rates even after 10 min of unsupported cardiac arrest secondary to hemorrhage, with some viability beyond to 15 min. This is promising as a tool for ECA, but requires additional optimization and clinical trials.Animal Use Protocol, IACUC: 0919015.