Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: The importance of circular RNA (circRNA) in the progression of septic acute kidney injury (AKI) was gradually recognized. It has been confirmed that circ_0008882 expression was decreased in the blood of patients with AKI. However, the role of circ_0008882 in septic AKI progression remains unclear. ⋯ MiR-155-5p was a target of circ_0008882, and miR-155-5p mimic restored circ_0008882 overexpression-mediated effects on LPS-treated HK2 cells. PDE7A was identified as a target gene of miR-155-5p, and PDE7A downregulation almost reverted the improvement impacts induced by the miR-155-5p inhibitor. Conclusions: Overexpression of circ_0008882 impeded LPS-induced HK2 cell injury by modulating miR-155-5p/PDE7A pathway, implying that circ_0008882 might be a possible circRNA-targeted therapy for septic AKI.
-
Background: Lipopolysaccride-induced myocardial injury was characterized by frequent mitochondrial dysfunction. Our previous studies found that nucleolin (NCL) played important protective roles in myocardial ischemia-reperfusion injury. Recently, it has been found that NCL has a protective effect on LPS-induced myocardial injury in vivo. ⋯ In addition, the activation of PGC-1α diminished the detrimental effects of NCL knockdown on mitochondrial biogenesis in vitro and in vivo. Conclusions: Nucleolin upregulated the gene expression of PGC-1α by directly binding to the 5'-UTR of PGC-1α mRNA and increasing its mRNA stabilities, then promoted mitochondrial biogenesis, and played protective effect on cardiomyocytes during LPS-induced myocardial injury. Taken together, all these data showed that NCL activated PGC-1α to rescue cardiomyocytes from LPS-induced myocardial injury insult, suggesting that the cardioprotective role of NCL might be a promising prospect for clinical treatment of patients with endotoxemia.
-
Background: Severe trauma disrupts bone marrow function resulting in persistent anemia and immunosuppression. Exosomes are extracellular vesicles implicated in disease, cellular functions, and immunomodulation. The effects of trauma plasma-derived exosomes on bone marrow hematopoiesis are unstudied; we hypothesized that trauma plasma-derived exosomes suppress bone marrow hematopoietic progenitor cell (HPC) growth and contribute to increased inflammatory cytokines and HPC mobilization. ⋯ Culture of trauma exosomal protein with bone marrow stromal cells resulted in increased expression of IFN-γ, IL-1α, TNF-α, G-CSF, CXCR4, SDF-1, and VCAM-1 in bone marrow stroma. Conclusions: Both plasma and plasma-derived exosomes from trauma patients adversely affect bone marrow function. Plasma-derived exosomes may contribute to altered hematopoiesis after severe trauma; analysis of exosomal content may improve our understanding of altered bone marrow function.
-
Background: Sepsis is a life-threatening medical emergency, frequently complicated with intensive care unit-acquired weakness syndrome (ICU-AW). ICU-AW patients display flaccid weakness of the limbs, especially in the proximal limb muscles. However, little is known regarding its pathogenesis. ⋯ Muscle strength of septic mice was improved upon metformin treatment. Metformin intervention is therefore proposed as a potential therapeutic strategy for ICU-AW. Conclusion: Taken together, we revealed a previously unappreciated linkage between cellular senescence and sepsis-induced muscle weakness and propose metformin as a potential therapeutic drug for the treatment of ICU-AW.
-
Background: Sepsis-associated encephalopathy (SAE) is a dysfunction of the central nervous system experienced during sepsis with variable clinical and pathophysiologic features. We sought to identify distinct SAE phenotypes in relation to clinical outcomes. Methods: The Medical Information Mart for Intensive Care IV (MIMIC-IV) database and the eICU database were used to conduct a retrospective cohort study. ⋯ Conclusions: Four SAE phenotypes had different clinical outcomes. The mixed phenotype had the worst outcomes. Further understanding of these phenotypes in sepsis may improve trial design and targeted SAE management.