Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Randomized Controlled Trial Multicenter Study Pragmatic Clinical Trial
The Effect of Xinmailong Infusion on Sepsis-Induced Myocardial Dysfunction: A Pragmatic Randomized Controlled Trial.
Sepsis-induced myocardial dysfunction (SIMD) contributes significantly to cardiovascular dysfunction during septic shock. We aimed to evaluate the potential role of Xinmailong injection (XMLI), a polypeptide medicine extracted from Periplaneta americana, in reversing the progression of myocardial damage to SIMD in sepsis patients. This was a multicenter, randomized, double-blind, parallel-group trial. ⋯ In septic patients, XMLI decreased the occurrence rate of diastolic SIMD more effectively than the placebo. The improvement in serum BNP concentration was also greater in the XMLI group. XMLI may, therefore, effectively and safely improve cardiac function in patients with sepsis.
-
Acute myocardial infarction (AMI) remains a major cause of mortality and morbidity, and cardiogenic shock (CS) a major cause of hospital mortality after AMI. Especially for ST elevation myocardial infarction (STEMI) patients, fast intervention is essential.Few proteins have proven clinically applicable for AMI. Most proposed biomarkers are based on a priori hypothesis-driven studies of single proteins, not enabling identification of novel candidates. For clinical use, the ability to predict AMI is important; however, studies of proteins in prediction models are surprisingly scarce.Consequently, we applied proteome data for identifying proteins associated with definitive STEMI, CS, and all-cause mortality after admission, and examined the ability of the proteins to predict these outcomes. ⋯ The association analyses propose individual proteins as putative protein biomarkers for definitive STEMI and survival after suspected STEMI, while the prediction models put forward sets of proteins with putative predicting ability of CS and survival. These proteins may be verified as biomarkers of potential clinical relevance.
-
Sepsis-associated encephalopathy (SAE) affects approximately one-third of septic patients, and there is a lack of effective therapeutics for SAE. Hydrogen gas is a new medical gas that exerts anti-inflammation, antioxidation, and anti-apoptotic effects and can effectively protect septic mice. Mitochondrial dysfunction, which can be improved by mitochondrial biogenesis, is a type of molecular pathology in sepsis. ⋯ The present study showed that hydrogen gas therapy increased the 7-day survival rate, improved cognitive function, increased the mitochondrial function (MMP, ATP level, complex I activity) and expression of mitochondrial biogenesis parameters (PGC-1α, NRF2, Tfam). However, the injection of SR-18292 (a PGC-1α inhibitor) decreased mitochondrial function, PGC-1α activation, and expression of NRF2 and Tfam. Therefore, these results indicate that hydrogen gas alleviates sepsis-induced brain injury in mice by improving mitochondrial biogenesis through the activation of PGC-1α.
-
Shock in patients resuscitated after out of hospital cardiac arrest (OHCA) is associated with an increased risk of mortality. We sought to determine the associations between lactate level, mean arterial pressure (MAP), and vasopressor/inotrope doses with mortality. ⋯ In patients treated with TTM after OHCA, greater shock severity, as reflected by higher lactate levels, mMAP < 70 mmHg, and higher vasopressor requirements during the first 24 h was associated with an increased rate of hospital mortality.