Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. ⋯ Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.
-
Objectives: Systemic ischemia-reperfusion triggered by cardiac arrest (CA) and resuscitation often causes postresuscitation multiple organ injuries. Mesenchymal stem cells (MSCs) have been proven to be a promising treatment for regional renal and intestinal ischemia reperfusion injuries. This study aimed to investigate the effects of MSCs on renal and intestinal injuries after cardiopulmonary resuscitation (CPR) in a porcine CA model. ⋯ Cell apoptosis and ferroptosis, which were indicated by the levels of apoptotic cells, iron deposition, lipid peroxidation, antioxidants, and ferroptosis-related proteins, were observed in renal and intestinal tissues after resuscitation in the CA/CPR and CA/CPR + MSC groups. Nevertheless, both were significantly milder in the CA/CPR + MSC group than in the CA/CPR group. Conclusions: MSC administration was effective in alleviating postresuscitation renal and intestinal injuries possibly through inhibition of cell apoptosis and ferroptosis in a porcine CA model.
-
Objective: Based on the functions of immunoregulation and signal transduction, septic peripheral blood sequencing and bioinformatics technology were used to screen potential core targets. Methods: Peripheral blood of 23 patients with sepsis and 10 normal volunteers underwent RNA-seq processing within 24 hours after admission to the hospital. Data quality control and differential gene screening were performed based on R language ( P < 0.01; log2FC ≥ 2). ⋯ Conclusions: CD160, KLRG1, S1PR5, and RGS16 were mainly located in human peripheral blood NK-T cells. Sepsis participants expressed lower levels of S1PR5, CD160, and KLRG1, while sepsis participants expressed higher levels of RGS16. This suggests that they may be potential research targets for sepsis.
-
Observational Study
ENDOTHELIAL GLYCOCALYX SHEDDING IN INTRA-ABDOMINAL SEPSIS: A FEASIBILITY STUDY.
Background: The endothelial glycocalyx layer (EGL) is a complex meshwork of glycosaminoglycans and proteoglycans that protect the vascular endothelium. Cleavage or shedding of EGL-specific biomarkers, such as hyaluronic acid (HA) and syndecan-1 (SDC-1, CD138) in plasma, have been shown to be associated with poor clinical outcomes. However, it is unclear whether levels of circulating EGL biomarkers are representative of the EGL injury within the tissues. ⋯ Conclusions: Elevations in both circulating and tissue EGL biomarkers were positively correlated with postoperative SOFA scores at 24 hours, with resected pathologic tissue EGL levels displaying significant correlations with SOFA scores at all time points. Tissue and circulating EGL biomarkers were positively correlated at higher SOFA scores (SOFA > 6) and could be used as indicators of resuscitative needs within 24 hours of surgery. The present study demonstrates the feasibility of tissue and plasma procurement in the operating room, although larger studies are needed to evaluate the predictive value of these EGL biomarkers for patients with intra-abdominal sepsis.
-
Background: Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in the United States, with an annual cost of 60 billion dollars. There is evidence suggesting that in the post-TBI period, the gastrointestinal tract plays a central role in driving organ and immune dysfunction and may be the source of increased circulating proinflammatory mediators. In this study, we examined systemic inflammation and bacterial dysbiosis in patients who sustained a TBI with or without polytrauma. ⋯ This accompanied decreased transit and increased TNF-α in the small intestine of mice after TBI. Conclusions: Our findings suggest that TBI increases systemic inflammation, intestinal dysfunction, and neuroinflammation. More studies are needed to confirm whether changes in intestinal motility play a role in post-TBI neuroinflammation and cognitive deficit.