Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Sepsis is a life-threatening medical emergency, frequently complicated with intensive care unit-acquired weakness syndrome (ICU-AW). ICU-AW patients display flaccid weakness of the limbs, especially in the proximal limb muscles. However, little is known regarding its pathogenesis. ⋯ Muscle strength of septic mice was improved upon metformin treatment. Metformin intervention is therefore proposed as a potential therapeutic strategy for ICU-AW. Conclusion: Taken together, we revealed a previously unappreciated linkage between cellular senescence and sepsis-induced muscle weakness and propose metformin as a potential therapeutic drug for the treatment of ICU-AW.
-
Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i. Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i. ⋯ Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
-
Background: Acute kidney injury (AKI) is a prevalent and serious complication among patients with sepsis-associated acute respiratory distress syndrome (ARDS). Prompt and accurate prediction of AKI has an important role in timely intervention, ultimately improving the patients' survival rate. This study aimed to establish machine learning models to predict AKI via thorough analysis of data derived from electronic medical records. ⋯ In addition, a novel shiny application based on the XGBoost model was established to predict the probability of developing AKI among patients with sepsis-associated ARDS. Conclusions: Machine learning models could be used for predicting AKI in patients with sepsis-associated ARDS. Accordingly, a user-friendly shiny application based on the XGBoost model with reliable predictive performance was released online to predict the probability of developing AKI among patients with sepsis-associated ARDS.
-
Background: Patients with underlying skeletal muscle atrophy are likely to develop aggravated sepsis. However, no study has experimentally verified the association between the prognosis of sepsis and muscle atrophy, and the mechanism of aggravation of sepsis under muscle atrophy remains unclear. In this study, we investigated the effect of skeletal muscle atrophy induced by sciatic denervation (DN), an experimental muscle atrophy model, on sepsis prognosis. ⋯ DN-CLP). Conclusions: We verified that skeletal muscle atrophy induced by DN is associated with poor prognosis after CLP-induced sepsis. Importantly, mice with skeletal muscle atrophy presented worsening sepsis prognosis at late onset, including prolonged infection, persistent inflammation, and kidney damage accumulation, resulting in delayed recovery.
-
Introduction: The dysregulated immune response in sepsis is highly variable, ranging from hyperinflammation to immunoparalysis. Obesity is associated with the release of inflammatory mediators from adipose tissue, known as adipocytokines, causing a chronic inflammatory state. Perhaps counterintuitively, obesity is also associated with lower mortality in sepsis patients. ⋯ Although resistin is related to the immune response and an increased risk of adverse clinical outcomes, these associations are similar in patients with normal weight, overweight, and obesity. This implies that the relationship between resistin and clinical outcome is likely driven by the inflammatory response and not by obesity itself. Taken together, although there exists a strong association between inflammation and sepsis mortality, our results do not point toward a role for obesity and BMI-related adipocytokines in immune dysregulation in sepsis patients.