American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Dec 2022
Randomized Controlled Trial Multicenter StudyHigh-Flow Versus VenturiMask Oxygen Therapy to Prevent Re-Intubation in Hypoxemic Patients After Extubation: A Multicenter, Randomized Clinical Trial.
Rationale: When compared with VenturiMask after extubation, high-flow nasal oxygen provides physiological advantages. Objectives: To establish whether high-flow oxygen prevents endotracheal reintubation in hypoxemic patients after extubation, compared with VenturiMask. Methods: In this multicenter randomized trial, 494 patients exhibiting PaO2:FiO2 ratio ⩽ 300 mm Hg after extubation were randomly assigned to receive high-flow or VenturiMask oxygen, with the possibility to apply rescue noninvasive ventilation before reintubation. ⋯ Conclusions: Reintubation rate did not significantly differ between patients treated with VenturiMask or high-flow oxygen after extubation. High-flow oxygen yielded less frequent use of rescue noninvasive ventilation. Clinical trial registered with www.clinicaltrials.gov (NCT02107183).
-
Am. J. Respir. Crit. Care Med. · Dec 2022
Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis.
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U. S. ⋯ Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
-
Am. J. Respir. Crit. Care Med. · Dec 2022
Lung Allograft Microbiome Association with Gastroesophageal Reflux, Inflammation, and Allograft Dysfunction.
Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. ⋯ Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.
-
Am. J. Respir. Crit. Care Med. · Dec 2022
Transcriptional Circuitry of NKX2-1 and SOX1 Defines an Unrecognized Lineage Subtype of Small Cell Lung Cancer.
Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. ⋯ We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.