Annual review of physiology
-
Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. ⋯ There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction.
-
Annu. Rev. Physiol. · Jan 2003
ReviewThe role of exogenous surfactant in the treatment of acute lung injury.
A number of conditions, such as pneumonia, trauma, or systemic sepsis arising from the gut, may result in the acute respiratory distress syndrome (ARDS). Because of its significant morbidity and mortality, ARDS has been the focus of extensive research. ⋯ Several studies have demonstrated that alterations of surfactant contribute to the lung dysfunction associated with ARDS, which has led to investigations into the use of exogenous surfactant as a therapy for this syndrome. Clinical experience with surfactant therapy has been variable owing to a number of factors including the nature of the injury at the time of treatment, the specific surfactant preparation utilized, the dose and delivery method chosen, the timing of surfactant administration over the course of the disease, and the mode of ventilation used during and after surfactant administration.