Neurobiology of disease
-
Neurobiology of disease · Jun 2013
G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain.
Rodent exposure to binge-like ethanol during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces neuronal cell loss. However, the molecular mechanisms underlying these neuronal losses are still poorly understood. Here, we tested the possibility of histone methylation mediated by G9a (lysine dimethyltransferase) in regulating neuronal apoptosis in P7 mice exposed to ethanol. ⋯ Further, pharmacological inhibition of G9a activity prior to ethanol treatment at P7 normalized H3K9me2, H3K27me2 and total H3 proteins to basal levels and prevented neurodegeneration in neonatal mice. Together, these data demonstrate that G9a mediated histone H3K9 and K27 dimethylation critically regulates ethanol-induced neurodegeneration in the developing brain. Furthermore, these findings reveal a novel link between G9a and neurodegeneration in the developing brain exposed to postnatal ethanol and may have a role in fetal alcohol spectrum disorders.
-
Neurobiology of disease · Jun 2013
Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury.
Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. ⋯ Meanwhile, axonal regeneration is comparatively lower in the Nrf2(-/-) mice than in the wild type mice. Even after 3months post the injury, more thinly myelinated axon fibers were present in the Nrf2(-/-) mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury.
-
Neurobiology of disease · Jun 2013
The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes.
Multiple sclerosis (MS) is a progressive, demyelinating inflammatory disease of the human central nervous system (CNS). While the primary symptoms of MS affect motor function, it is now recognized that chronic pain is a relevant symptom that affects both animals and MS patients. There is evidence that glial cells, such as astrocytes, play an important role in the development and maintenance of chronic pain. ⋯ The B1R was co-localized with immunomarker of astrocytes in the spinal cord of EAE-treated animals. The above data constitute convincing experimental evidence indicating that both kinin receptors, especially the B1 subtype, exert a critical role in the establishment of persistent hypersensitivity observed in the EAE model, an action that seems to involve a central inflammatory process, possibly acting on astrocytes. Thus, B1 selective antagonists or drugs that reduce kinin release may have the potential to treat neuropathic pain in patients suffering from MS.
-
Neurobiology of disease · Jun 2013
Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage.
Neonatal encephalopathy is associated with high mortality and life-long developmental consequences. Therapeutic options are very limited. We assessed the effects of D-JNKi, a small peptide c-Jun N-terminal kinase (JNK) MAP kinase inhibitor, on neuroinflammation, mitochondrial integrity and neuronal damage in a neonatal rat model of ischemic brain damage. ⋯ We show here for the first time that D-JNKi treatment efficiently protects the neonatal brain against ischemic brain damage and subsequent cognitive and motor impairment. We propose that inhibition of phosphorylation of mitochondrial JNK is a pivotal step in preventing early loss of mitochondrial integrity leading to reduced neuroinflammation and inhibition of apoptotic neuronal loss. Moreover we show the crucial role of upregulation of mitochondrial anti-apoptotic proteins to maintain neuroprotection.
-
Neurobiology of disease · Jun 2013
Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury.
Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. ⋯ While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.