Neurobiology of disease
-
Neurobiology of disease · Feb 2015
Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. ⋯ Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.
-
Neurobiology of disease · Feb 2015
Neuroinflammation and brain atrophy in former NFL players: An in vivo multimodal imaging pilot study.
There are growing concerns about potential delayed, neuropsychiatric consequences (e.g, cognitive decline, mood or anxiety disorders) of sports-related traumatic brain injury (TBI). Autopsy studies of brains from a limited number of former athletes have described characteristic, pathologic changes of chronic traumatic encephalopathy (CTE) leading to questions about the relationship between these pathologic and the neuropsychiatric disturbances seen in former athletes. Research in this area will depend on in vivo methods that characterize molecular changes in the brain, linking CTE and other sports-related pathologies with delayed emergence of neuropsychiatric symptoms. ⋯ We also observed significant atrophy of the right hippocampus. Finally, we report that these same former players had varied performance on a test of verbal learning and memory, suggesting that these molecular and pathologic changes may play a role in cognitive decline. These results suggest that localized brain injury and repair, indicated by increased [(11)C]DPA-713 binding to TSPO, may be linked to history of NFL play. [(11)C]DPA-713 PET is a promising new tool that can be used in future study design to examine further the relationship between TSPO expression in brain injury and repair, selective regional brain atrophy, and the potential link to deficits in verbal learning and memory after NFL play.
-
Neurobiology of disease · Feb 2015
Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability.
Previous studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches (Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. ⋯ Importantly, a common feature of all brain niches was a rich vasculature with a blood-brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate that stem cell niches are more extensive than once believed and exist at multiple sites along the entire ventricular system, consistent with the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly after injury. We further suggest that because of their leaky BBB, stem cell niches are well-positioned to respond to systemic injury-related cues which may be important for stem-cell mediated brain repair.
-
Neurobiology of disease · Jan 2015
Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing.
Mutations in the Gjb2 gene, which encodes a gap junction protein connexin26 (Cx26), are the most prevalent form of hereditary deafness in humans and represent about half of non-syndromic congenital deafness cases in many ethnic populations. Cochlear potassium (K+) recycling in mature cochlea is required for normal hearing. It is thought that gap junctions are essential for K+ recycling and that Gjb2 mutations cause Gjb2-associated deafness by disrupting K+ recycling in mature cochlea. ⋯ Similar amount of Cx26 reduction in more mature cochleae had a much weaker effect in damaging the hearing sensitivity. Our findings indicated that Cx26 plays essential roles in the maturation process of the organ of Corti prior to the establishment of high K+ in the endolymph and the onset of hearing. These results suggest that successful treatment of Cx26 deafness requires early intervention before the cochlea fully matures.
-
Neurobiology of disease · Jan 2015
Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury.
Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPσ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). ⋯ LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates the crucial role of LAR in restricting regrowth of injured CNS axons.