Neurobiology of disease
-
Neurobiology of disease · Oct 2020
ReviewCircadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms.
Circadian organization of physiology and behavior is an important biological process that allows organisms to anticipate and prepare for daily changes and demands. Disruptions in this system precipitates a wide range of health issues. In patients with neurodegenerative diseases, alterations of circadian rhythms are among the most common and debilitating symptoms. ⋯ Recent studies have examined the neuropathological status of the different neural components of the circuitry governing the generation of circadian rhythms in neurodegenerative diseases. In this review, we will dissect the potential contribution of dysfunctions in the different nodes of this circuitry to circadian alterations in patients with neurodegenerative diseases. A deeper understanding of these mechanisms will provide not only a better understanding of disease neuro-pathophysiology, but also hold the promise for developing effective and mechanisms-based therapies.
-
Epilepsy is one of the most common brain disorders, causing serious disability and premature death worldwide. Approximately 1.2% of the U. S. population has active epilepsy, and 30 to 40% have seizures that do not respond to antiseizure drugs. ⋯ This requires better understanding of neuronal mechanisms underlying the development of epilepsy, and biomarkers of this process that would permit cost-effective drug discovery, and validation in clinical trials, for potential antiepileptogenic compounds. EpiBioS4Rx is an NIH-funded Center without Walls consisting of collaborative investigations in the United States, Europe, and Australia of traumatic brain injury in patients, and a standardized animal model, to identify biomarkers of epileptogenesis and to determine their ability to assess the effectiveness of potential antiepileptogenic agents. Successful completion of this project is expected to result in design of an economically feasible, full-scale clinical trial of at least one antiepileptogenic intervention.
-
Neurobiology of disease · Mar 2019
ReviewThe epilepsy bioinformatics study for anti-epileptogenic therapy (EpiBioS4Rx) clinical biomarker: Study design and protocol.
The Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy (EpiBioS4Rx) is a longitudinal prospective observational study funded by the National Institute of Health (NIH) to discover and validate observational biomarkers of epileptogenesis after traumatic brain injury (TBI). A multidisciplinary approach has been incorporated to investigate acute electrical, neuroanatomical, and blood biomarkers after TBI that may predict the development of post-traumatic epilepsy (PTE). We plan to enroll 300 moderate-severe TBI patients with a frontal and/or temporal lobe hemorrhagic contusion. ⋯ Validation of selected biomarkers that are discovered in planned animal models will be a principal feature of this work. Specific hypotheses regarding the discovery of biomarkers have been set forth in this study. An international cohort of 13 centers spanning 2 continents will be developed to facilitate this study, and for future interventional studies.
-
Neurobiology of disease · Mar 2019
ReviewProtein biomarkers of epileptogenicity after traumatic brain injury.
Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy (PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the development of this condition. ⋯ Although a positive correlation exists between the type and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to identify pathobiologies underlying the development of PTE, high-risk individuals, and disease modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future directions aimed at improving the diagnosis and treatment of PTE.
-
Neurobiology of disease · Mar 2019
ReviewAffective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy.
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. ⋯ Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.