Neurobiology of disease
-
Neurobiology of disease · Apr 2003
ReviewHyperthermia following traumatic brain injury: a critical evaluation.
Hyperthermia, frequently seen in patients following traumatic brain injury (TBI), may be due to posttraumatic cerebral inflammation, direct hypothalamic damage, or secondary infection resulting in fever. Regardless of the underlying cause, hyperthermia increases metabolic expenditure, glutamate release, and neutrophil activity to levels higher than those occurring in the normothermic brain-injured patient. ⋯ Although rigorous control of normal body temperature is the current standard of care for the brain-injured patient, patient management strategies currently available are often suboptimal and may be contraindicated. This article represents a compendium of published work regarding the state of knowledge of the relationship between hyperthermia and TBI, as well as a critical examination of current management strategies.
-
According to recent epidemiological surveys, autistic spectrum disorders have become recognized as common childhood psychopathologies. These life-lasting conditions demonstrate a strong genetic determinant consistent with a polygenic mode of inheritance for which several autism susceptibility regions have been identified. ⋯ The neurochemical and immunologic findings are analyzed in the context of a neuroimmune hypothesis for autism. Studies of disorders with established neuroimmune nature indicate multiple pathways of the pathogenesis; herein, we discuss evidence of similar phenomena in autism.
-
The use of cannabis for the management of a wide range of painful disorders has been well documented in case reports throughout history. However, clinical evaluations of cannabis and its psychoactive constituent THC have not led to a consensus regarding their analgesic effectiveness. ⋯ The endogenous ligand, anandamide, is also an effective antinociceptive agent. The extent to which the endogenous cannabinoid system is involved in the modulation of pain is currently unknown.
-
Neurobiology of disease · Dec 1998
ReviewThe functional neuroanatomy of brain cannabinoid receptors.
The effects of the primary psychoactive constituent of marijuana, delta 9-tetrahydrocannabinol, are mediated by cannabinoid receptors, CB1 and CB2. The CB1 receptors display a unique central nervous system (CNS) distribution and are present in mammalian brain at higher levels than most other known G-protein-coupled receptors. The highest levels occur in several areas involved in motor control and hippocampus. Cannabinoid effects on CNS activities, including movement, memory, nociception, endocrine regulation, thermoregulation, sensory perception, cognitive functions, and mood, correlate with the regional distribution of cannabinoid receptors and their activation of specific G-protein-mediated signal transduction systems in various brain regions.
-
Neurobiology of disease · Oct 1998
ReviewPostherpetic neuralgia: irritable nociceptors and deafferentation.
Postherpetic neuralgia (PHN) is a common and often devastatingly painful condition. It is also one of the most extensively investigated of the neuropathic pains. Patients with PHN have been studied using quantitative testing of primary afferent function, skin biopsies, and controlled treatment trials. ⋯ Other deafferentation patients have severe spontaneous pain without hyperalgesia or allodynia and presumably have lost both large and small diameter fibers. In this group the pain is likely due to increased spontaneous activity in deafferented central neurons and/or reorganization of central connections. These three types of mechanism may coexist in individual patients and each offers the possibility for developing new therapeutic interventions.