Molecular medicine
-
Opioid-induced hyperalgesia (OIH) is a paradoxical increase in pain perception that may manifest during opioid treatment. For morphine, the metabolite morphine-3-glucuronide (M3G) is commonly believed to underlie this phenomenon. Here, in three separate studies, we empirically assess the role of M3G in morphine-induced hyperalgesia. ⋯ Mrp3(-/-) mice displayed a significantly reduced capacity to export M3G into the systemic circulation, with plasma M3G concentrations just 7% of those observed in FVB controls. The data confirm previous literature that morphine causes hyperalgesia in the absence of opioid receptor activation but also indicate that this hyperalgesia may occur without a significant contribution of hepatic M3G. The relevance of these data to humans has yet to be demonstrated.
-
Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. ⋯ Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.
-
Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. Although trastuzumab is a very active agent in HER2-overexpressing breast cancer, the majority of patients with metastatic HER2-overexpressing breast cancer who initially respond to trastuzumab develop resistance within 1 year of initiation of treatment and, in the adjuvant setting, progress despite trastuzumab-based therapy. The antibody-drug conjugate trastuzumab-DM1 (T-DM1) was designed to combine the biological activity of trastuzumab with the targeted delivery of a highly potent antimicrotubule agent, DM1 (N-methyl-N-[3-mercapto-1-oxopropyl]-l-alanine ester of maytansinol), a maytansine derivative, to HER2-overexpressing breast cancer cells. ⋯ Two randomized phase III trials of T-DM1 are awaiting final results; the EMILIA trial is evaluating T-DM1 compared with lapatinib plus capecitabine, and early positive results have been reported. The MARIANNE trial is evaluating T-DM1 plus placebo versus T-DM1 plus pertuzumab versus trastuzumab plus a taxane. Here, we summarize evidence from clinical studies and discuss the potential clinical implications of T-DM1.
-
Pulmonary hypertension (PH) is a devastating disease leading to progressive hypoxemia, right ventricular failure, and death. Hypoxia can play a pivotal role in PH etiology, inducing pulmonary vessel constriction and remodeling. These events lead to increased pulmonary vessel wall thickness, elevated vascular resistance and right ventricular hypertrophy. ⋯ In vivo, chronic exposure of mice to a normobaric atmosphere of 10% oxygen increased lung tissue expression of mRNA encoding MIF and accumulation of MIF in plasma. Inhibition of the MIF inflammatory active site, during hypoxic exposure, significantly reduced pulmonary vascular remodeling, cardiac hypertrophy and right ventricular systolic pressure. The data suggest that MIF plays a critical role in hypoxia-induced PH, and its inhibition may be beneficial in preventing the development and progression of the disease.
-
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. ⋯ IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.