Molecular medicine
-
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. ⋯ IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
-
Pneumonia is a common cause of morbidity and mortality and the most frequent source of sepsis. Bacteria that try to invade normally sterile body sites are recognized by innate immune cells through pattern recognition receptors, among which toll-like receptors (TLRs) feature prominently. Interleukin-1 receptor (IL-1R)-associated kinase (IRAK)-M is a proximal inhibitor of TLR signaling expressed by epithelial cells and macrophages in the lung. ⋯ Although IRAK-M(-/-) alveolar macrophages displayed enhanced responsiveness toward intact K. pneumoniae and Klebsiella lipopolysaccharide (LPS) in vitro, IRAK-M(-/-) mice did not show increased cytokine or chemokine levels in their lungs after infection in vivo. The extent of lung inflammation was increased in IRAK-M(-/-) mice shortly after K. pneumoniae infection, as determined by semiquantitative scoring of specific components of the inflammatory response in lung tissue slides. These data indicate that IRAK-M impairs host defense during pneumonia caused by a common gram-negative respiratory pathogen.
-
Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. ⋯ Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.
-
Mitochondria play a critical role in metabolic homeostasis of a cell. Our recent studies, based on the reported interrelationship between c-Myc and Sirt1 (mammalian orthologue of yeast sir2 [silent information regulator 2]) expression and their role in mitochondrial biogenesis and function, demonstrated a significant downregulation of Sirt1 protein expression and an upregulation of c-Myc following trauma-hemorrhage (T-H). Activators of Sirt1 are known to improve mitochondrial function and the naturally occurring polyphenol resveratrol (RSV) has been shown to significantly increase Sirt1 activity by increasing its affinity to both NAD+ and the acetylated substrate. ⋯ We also observed significantly higher cardiac ATP content, declined cytosolic cytochrome C and decreased plasma tumor necrosis factor-α in the T-H-RSV group. The salutary effect due to RSV was abolished by sirtinol, indicating a Sirt1-mediated effect. We conclude that RSV may be a useful adjunct to resuscitation fluid following T-H.
-
Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. Although trastuzumab is a very active agent in HER2-overexpressing breast cancer, the majority of patients with metastatic HER2-overexpressing breast cancer who initially respond to trastuzumab develop resistance within 1 year of initiation of treatment and, in the adjuvant setting, progress despite trastuzumab-based therapy. The antibody-drug conjugate trastuzumab-DM1 (T-DM1) was designed to combine the biological activity of trastuzumab with the targeted delivery of a highly potent antimicrotubule agent, DM1 (N-methyl-N-[3-mercapto-1-oxopropyl]-l-alanine ester of maytansinol), a maytansine derivative, to HER2-overexpressing breast cancer cells. ⋯ Two randomized phase III trials of T-DM1 are awaiting final results; the EMILIA trial is evaluating T-DM1 compared with lapatinib plus capecitabine, and early positive results have been reported. The MARIANNE trial is evaluating T-DM1 plus placebo versus T-DM1 plus pertuzumab versus trastuzumab plus a taxane. Here, we summarize evidence from clinical studies and discuss the potential clinical implications of T-DM1.