Journal of investigative medicine : the official publication of the American Federation for Clinical Research
-
Dysregulated cholesterol metabolism represents an increasingly recognized feature of autism spectrum disorder (ASD). Children with fetal valproate syndrome caused by prenatal exposure to valproic acid (VPA), an anti-epileptic and mood-stabilizing drug, have a higher incidence of developing ASD. However, the role of VPA in cholesterol homeostasis in neurons and microglial cells remains unclear. ⋯ VPA exposure significantly reduced protein levels of ABCA1 in a dose-dependent manner, but increased the ABCG1 protein level at the highest dose in SH-SY5Y cells. In addition, VPA treatment significantly increased cholesterol efflux in SH-SY5Y, but had no impact on efflux in HMC3. VPA differentially controls the expression of ABCA1 and ABCG1, but regulation at the transcriptional and translational levels are not consistent and changes in the expression of these genes do not correlate with cholesterol efflux in vitro.
-
Atrial fibrillation (AF) frequently occurs concurrently with heart failure (HF). The two conditions can exacerbate each other, resulting in higher morbidity and mortality. In our analysis, we evaluated mortality trends related to AF in individuals with underlying HF. ⋯ Our results demonstrate existing disparities among age, gender, racial, and geographic subgroups related to AF mortality among individuals with comorbid HF. Although decreased overall mortality was observed within younger populations compared to older populations, the prominent AAPC seen in younger populations warrants further investigation. Detection of AF among younger adults with comorbid HF should prompt the intensification of preventative and treatment measures.
-
Metabolic dysfunction-associated fatty liver disease (MAFLD) is strongly associated with disturbances in the intestinal microbiota. Herein, the biological effects and mechanism of Bifidobacterium bifidum BGN4 fractions in regulating hepatocyte ferroptosis during MAFLD progression were investigated. To establish an in vitro model of MAFLD, LO2 cells were subjected to palmitic acid (PA). ⋯ Moreover, we observed that BGN4 fractions inhibited CYP2E1 transcription by suppressing SREBP1 nuclear translocation. In addition, CYP2E1 overexpression eliminated the inhibitory effect of BGN4 fractions on PA-induced hepatocyte oxidative stress and ferroptosis. These findings collectively indicated that BGN4 fractions reduced CYP2E1 expression by inhibiting SREBP1 nuclear translocation, thereby suppressing hepatocyte oxidative stress and ferroptosis during the development of MAFLD.
-
The coronavirus disease 2019 (COVID-19) pandemic, which emerged in late 2019, has caused millions of infections and fatalities globally, disrupting various aspects of human society, including socioeconomic, political, and educational systems. One of the key challenges during the COVID-19 pandemic is accurately predicting the clinical development and outcome of the infected patients. In response, scientists and medical professionals globally have mobilized to develop prognostic strategies such as risk scores, biomarkers, and machine learning models to predict the clinical course and outcomes of COVID-19 patients. ⋯ Our model outperforms the clinical predictive models regarding patient mortality risk and classification in the literature. Therefore, we conclude that our robust model can help healthcare professionals to manage COVID-19 patients more effectively. We expect that early prediction of COVID-19 patients and preventive interventions can reduce the mortality risk of patients.
-
Although reports of familial clustering of hematologic malignancies have appeared for decades, the cause(s) of this uncommon occurrence is still not completely understood. Most modern investigations, however, support a genetic rather than an environmental exposure as a cause of this observation. Most pedigrees of families with familial hematologic malignancies demonstrate age of onset anticipation, with the disease diagnosed at an earlier age in successive generations. ⋯ In preparation for molecular studies of familial clustering of hematologic malignancies, we have collected pedigrees on 738 families and have previously demonstrated anticipation in those with familial plasma cell myeloma, chronic lymphocytic leukemia, Hodgkin lymphoma or non-Hodgkin lymphoma (NHL). Here we present data on 36 families with both plasma cell myeloma and NHL in their pedigrees and demonstrate strong evidence for anticipation in these families. We encourage all health care personnel to ask patients multiple times about family medical history and carefully take note of family histories from individuals with uncommon illnesses and to refer families with clustering of such illnesses for further investigation.