Experimental neurology
-
Experimental neurology · Apr 2012
ReviewATP receptors gate microglia signaling in neuropathic pain.
Microglia were described by Pio del Rio-Hortega (1932) as being the 'third element' distinct from neurons and astrocytes. Decades after this observation, the function and even the very existence of microglia as a distinct cell type were topics of intense debate and conjecture. However, considerable advances have been made towards understanding the neurobiology of microglia resulting in a radical shift in our view of them as being passive bystanders that have solely immune and supportive roles, to being active principal players that contribute to central nervous system pathologies caused by disease or following injury. ⋯ Microglia express several P2 receptor subtypes, and of these the P2X4, P2X7, and P2Y12 receptor subtypes have been implicated in neuropathic pain. The P2X4 receptor has emerged as the core microglia-neuron signaling pathway: activation of this receptor causes release of brain-derived neurotrophic factor (BDNF) which causes disinhibition of pain-transmission neurons in spinal lamina I. The present review highlights recent advances in understanding the signaling and regulation of P2 receptors expressed in microglia and the implications for microglia-neuron interactions for the management of neuropathic pain.
-
Experimental neurology · Apr 2012
ReviewSpatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. ⋯ In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.
-
Experimental neurology · Apr 2012
ReviewImmune responses of microglia in the spinal cord: contribution to pain states.
The role of microglia and their contribution to the development and maintenance of pain states has emerged as an attractive field of study. Sensitization of central nociceptors and interneurons is thought to be responsible for the symptoms of chronic neuropathic pain states. Microglia interact with these neurons at the site of injury or disease as well as remotely. ⋯ Activated microglia also exhibit a modulated cell surface receptor and ion channel profile. The activation of several intracellular pathways in microglia has also been implicated in pain states. Attenuation of microglia activity is being presented as a viable therapeutic approach with regard to not only the reduction of pain symptoms but also in preventing the development of chronic pain states.
-
Experimental neurology · Apr 2012
Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model.
Brain-derived neurotrophic factor (BDNF) exists in small to medium size neurons in adult rat dorsal root ganglion (DRG) and serves as a modulator at the first synapse of the pain transmission pathway in the spinal dorsal horn. Peripheral nerve injury increases BDNF expression in DRG neurons, an event involved in the genesis of neuropathic pain. In the present study, we tested the hypothesis that prostaglandin E2 (PGE2) over-produced in injured nerves contributes to the up-regulation of BDNF in DRG neurons. ⋯ Taken together, EP1 and EP4 receptor subtypes, PKA, ERK/MAPK and CREB signaling pathways as well as NGF are involved in PGE2-induced BDNF synthesis in DRG neurons. Injured nerve derived-PGE2 contributes to BDNF up-regulation in DRG neurons following nerve injury. Facilitating the synthesis of BDNF in primary sensory neurons is a novel mechanism underlying the role of PGE2 in the genesis of neuropathic pain.
-
This special issue of Experimental Neurology is devoted to the role of Microglia and Chronic Pain. Chronic pain affects 116 million people per year in the United States, which is more than heart disease, cancer, and diabetes combined. Nervous system trauma and disease are principal contributors to the establishment of chronic pain in people and in animal models. ⋯ Once considered to function solely as the phagocytotic cells of the CNS, more recent work has demonstrated that persistent activation of the microglial population may contribute to continued dysfunction including chronic pain. In the invited articles for this special issue on Microglia and Chronic Pain, we present evidence for the role of persistent microglial activation in chronic pain after peripheral and central nervous system injury, as well as in diabetic pain, post-herpetic neuralgia pain and related diseases. Collectively, the body of work indicates the importance of understanding the roles of microglial cells in chronic pain which will lead to targeted treatment to attenuate or alleviate chronic neuropathic pain syndromes.