Experimental neurology
-
Experimental neurology · Nov 2015
Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.
Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. ⋯ Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect.
-
Experimental neurology · Nov 2015
Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.
Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. ⋯ Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.
-
Experimental neurology · Nov 2015
Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury.
Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. ⋯ In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.
-
Experimental neurology · Nov 2015
Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury.
Chronic traumatic encephalopathy (CTE) is associated with repetitive mild traumatic brain injury (mTBI) in the context of contact and collision sports, but not all exposed individuals develop this condition. In addition, experiments in animal models in several laboratories have shown that non-transgenic mice do not develop tauopathy after exposure to repetitive mTBI schedules. It is thus reasonable to assume that genetic factors may play an etiological role in the development of CTE. ⋯ On the other hand, we found no association between repetitive mTBI and density of pS422 (+) neuronal profiles in neocortex, a region that is not featured by significant TAI in our repetitive mTBI model. We observed similar, but less prominent, trends in tauopathy-prone transgenic mice harboring all 6 isoforms of wild-type human tau without mouse tau. Our findings indicate that repetitive mTBI accelerates tauopathy under diverse genetic conditions predisposing to tau aggregation and suggest a vulnerability-stress model in understanding some cases of acquired neurodegenerative disease after repetitive mTBI.
-
Experimental neurology · Nov 2015
GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury.
Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region. ⋯ Design-based stereology revealed that although the total number of neurons was unaltered, the number of GABAergic interneurons is significantly reduced in the CA1 region 7 days after CCI. Additionally, the surface expression of α1, ß2/3, and γ2 subunits of the GABAA receptor were reduced, contributing to a reduced mIPSC frequency and amplitude, respectively. Together, these results suggest that mTBI causes a significant reduction in GABAergic inhibitory transmission and deficits to NMDA receptor mediated currents in the CA1, which may contribute to changes in hippocampal excitability and subsequent cognitive impairments after mTBI.