General and comparative endocrinology
-
Gen. Comp. Endocrinol. · May 2012
ReviewNucleobindins: bioactive precursor proteins encoding putative endocrine factors?
The nucleobindins, nucleobindin 1 (NUCB1) and nucleobindin 2 (NUCB2), are homologous multidomain calcium and DNA binding proteins. NUCB1 is a well-characterized Golgi protein found within the rat pituitary, liver and kidney with functions related to immunity, calcium homeostasis and G protein signaling. NUCB2 is found both in the hypothalamus and brain stem centers, as well as peripherally in the digestive tract. ⋯ From the sequence information available, it is possible that nucelobindins itself or nesfatin-1 like peptides within the NUCB1 could also elicit nesfatin-1-like biological functions. The research on nesfatin-1 in last 5years further adds to the importance of nucleobindins as potential endocrine precursors. This review aims to summarize some of the most recent findings on the functional significance of NUCB1, NUCB2, as well as encoded proteins and highlights the questions that remain unanswered.
-
Gen. Comp. Endocrinol. · May 2012
ReviewHormones, life-history, and phenotypic variation: opportunities in evolutionary avian endocrinology.
Life-histories provide a powerful, conceptual framework for integration of endocrinology, evolutionary biology and ecology. This has been a commonly articulated statement but here I show, in the context of avian reproduction, that true integration of ultimate and proximate approaches has been slow. ⋯ Endocrine systems provide strong candidate mechanisms for regulation of phenotypic variation in single traits, and two endocrine concepts capture the essence of life-history trade-offs: (a) hormonal 'pleiotropy', when single hormones have both positive and negative effects on multiple physiological systems and (b) hormonal conflict between regulatory systems required for different but over-lapping or linked life-history stages. I illustrate these ideas with examples of reproductive anemia, migration-reproduction overlap, and molt-breeding overlap, to highlight some of the tremendous opportunities that exist for comparative endocrinologists to contribute to mechanistic studies of avian reproduction in an evolutionary context.