Current pharmaceutical design
-
Recent emergence of COVID-19 caused by a new human coronavirus (CoV) strain (SARS-CoV-2), which originated from China, poses the future emergence of additional CoVs. In most of the cases of emergence of human CoVs, bats, palm civets, raccoon dogs and camels have been identified as the sources of human infections and as reservoir hosts. A review of comparative genomic and phenotypic characteristics of human CoV strains vis-à-vis their comparison with the corresponding animal isolates shall provide clues regarding the potential genomic, phenotypic and molecular factors responsible for host-switching, which may lead to prospective emergence and re-emergence of human CoV outbreaks in the future. ⋯ High propensity of mutations and "molecular adaptations" in coronaviruses creates the hot spots and high potential for "host switching", leading to the emergence of more virulent strains of human CoVs. The public/global health agencies, medical communities and research scientists should be prepared for the emergence and re-emergence of new human CoV strain(s) leading to potential disease outbreaks. The inhibitors binding with conserved druggable regions of spike proteins from multiple strains CoV may have utility as broad-spectrum antiviral drugs to combat future emergence of CoVs.
-
Coronavirus disease-2019 (COVID-19) is a respiratory tract infection accompanied by severe or fatal pneumonia-like symptoms and sometimes death. It has posed to be an ongoing global health emergency caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to a sudden outbreak and a large number of infections and deaths, it became a major concern all over the world. ⋯ All these therapeutic options have their advantages and limitations. This review highlights the therapeutic potential of these available drugs, along with their mechanism of action and shortcomings. We have provided detailed information on available therapeutic options, which have proved to be effective in improving clinical symptoms of severe COVID-19 patients.
-
Protecting intellectual property rights are important and particularly pertinent for inventions that are an outcome of rigorous research and development. While the grant of patents is subject to establishing novelty and inventive step, it further indicates the technological development and is helpful for researchers working in the same technical domain. The aim of the present research work is to map the existing work through an analysis of patent literature in the field of Coronaviruses (CoV), particularly COVID-19 (2019-nCoV). CoV is a large family of viruses known to cause illness in humans and animals, particularly known for causing respiratory infections, as evidenced in earlier times, such as in MERS i.e., Middle East Respiratory Syndrome; and SRS i.e., Severe Acute Respiratory Syndrome. A recently identified novel-coronavirus, known as COVID-19, has caused pandemic situations across the globe. ⋯ The present paper analyzes the existing patents in the field of Coronaviruses and 2019-nCoV and suggests a way forward for the effective contribution in this upcoming research area. From the trend analysis, an increase in the filing of the overall trend of patent families was observed for a period of 2010 to the current year. This multifaceted analysis of identified patent literature provides an understanding of the focuses on present ongoing research and a grey area in terms of the trends of technological innovations in disease management in patients with CoV and 2019-nCoV. Furthermore, the findings and outcome of the present study offer insights for the proposed research and innovation opportunities and provide actionable information in order to facilitate policymakers, academia, research-driven institutes and also investors to make better decisions regarding programmed steps for research and development for the diagnosis, treatment and taking preventive measures for CoV and 2019-nCoV. The present article also emphasizes the need for future development and the role of academia and collaboration with industry for speedy research with a rationale.
-
Tocilizumab is a humanised interleukin-6 receptor-inhibiting monoclonal antibody that is currently approved for the treatment of rheumatoid arthritis and other immune-related conditions. Recently, tocilizumab has been investigated as a possible treatment for severe coronavirus-induced disease 2019 (COVID-19). Despite the lack of direct antiviral effects, tocilizumab could reduce the immune-induced organ damage caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) infection. ⋯ We searched the MEDLINE database with the string "(SARS-CoV-2 OR coronavirus OR COVID-19 OR MERS- cov OR SARS-cov) AND (IL-6 OR interleukin 6 OR tocilizumab)". While the scientific rationale supporting tocilizumab for COVID-19 is solid, the evidence regarding the outcomes remains controversial. Available data and results from ongoing trials will provide useful information in the event of new COVID-19 outbreaks or future pandemics from different coronaviruses.
-
The evolution of the pandemic has burdened the national healthcare systems worldwide and at present, there is no preferred antiviral treatment for COVID-19. Recently, the SARS-Cov-2 protease structure was released that may be exploited in in-silico studies in order to conduct molecular docking analysis. ⋯ Our data suggest that hydroxychloroquine may exert additional direct antiviral activity compared to chloroquine. In the absence of clinical studies comparing the efficacy of these two compounds, hydroxychloroquine may offer additional effects and may be considered as the first choice.