Brain research
-
One of the severe complications following traumatic brain injury (TBI) is cerebral edema and its effective treatment is of great interest to prevent further brain damage. This study investigated the effects of minocycline, known for its anti-inflammatory properties, on cerebral edema and its respective inflammatory markers by comparing different dose regimens, on oxidative stress and on neurological dysfunction following TBI. The weight drop model was used to induce TBI in mice. ⋯ The anti-edematous effect of minocycline persisted up to 24 h, upon a triple administration, and accompanied by a neurological recovery. In conclusion, we reported an anti-edematous effect of minocycline after TBI in mice according to a specific treatment regimen. These findings emphasize that the beneficial effects of minocycline depend on the treatment regimen following a brain injury.
-
Comparative Study
Effects of N-acetyl-cysteine on the survival and regeneration of sural sensory neurons in adult rats.
Microsurgical reconstruction of injured peripheral nerves often results in limited functional recovery. One contributing factor is the retrograde neuronal degeneration of sensory neurons in the dorsal root ganglia (DRG) and of motor neurons in the spinal cord. The present study investigates the neuroprotective and growth-promoting effects of N-acetyl-cysteine (NAC) on sensory DRG neurons and spinal motoneurons after sciatic axotomy and nerve grafting in adult rats. ⋯ Combined treatment with nerve graft and NAC had significant additive effect on neuronal survival and also increased the number of sensory neurons regenerating across the graft. However, NAC treatment neither affected the number of regenerating motoneurons nor the number of myelinated axons in the nerve graft or in the distal nerve stump. The present results demonstrate that NAC provides a highly significant effect of neuroprotection in an animal nerve injury model and that combination with nerve grafting further attenuates retrograde cell death and promotes regeneration of sensory neurons.
-
Comparative Study
Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits.
The clinical presentation of traumatic brain injury (TBI) involves either mild, moderate, or severe injury to the head resulting in long-term and even permanent disability. The recapitulation of this clinical scenario in animal models should allow examination of the pathophysiology of the trauma and its treatment. To date, only a few studies have demonstrated TBI animal models encompassing the three levels of trauma severity. ⋯ Here, we replicated the previously observed TBI severity-dependent brain damage as revealed by 2,3,5-triphenyltetrazolium chloride staining (severe > moderate > mild) in rats, but also extended this pattern of histopathologic changes in mice. Moreover, we showed severity-dependent abnormalities in locomotor and cognitive behaviors in TBI-exposed rats and mice. Taken together, these results support the use of rodent models of TBI as a sensitive platform for investigations of the injury-induced neurostructural and behavioral deficits, which should serve as key outcome parameters for testing experimental therapeutics.
-
Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. ⋯ The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.
-
The P300 in event-related potentials (ERPs) has been implicated in outcome evaluation and reward processing, but it is controversial as to what aspects of reward processing it is sensitive. This study manipulated orthogonally reward valence, reward magnitude, and expectancy towards reward magnitude in a monetary gambling task and observed both the valence and the magnitude effects on the P300, but only when the amount of reward was expected on the basis of a previous cue. The FRN (feedback-related negativity), defined as the mean amplitudes of ERP responses to the loss or the gain outcome in the 250-350 ms time window post-onset of feedback, was found to be sensitive not only to reward valence, but also to expectancy towards reward magnitude and reward magnitude, with the violation of expectancy and the small magnitude eliciting more negative-going FRN. These findings demonstrate that while the FRN may function as a general mechanism that evaluates whether the outcome is consistent or inconsistent with expectation, the P300 is sensitive to a later, top-down controlled process of outcome evaluation, into which factors related to the allocation of attentional resources, including reward valence, reward magnitude, and magnitude expectancy, come to play.