Brain research
-
Irritable Bowel Syndrome (IBS) is a common functional gastrointestinal disorder which is characterized by altered bowel habits. A growing number of studies investigate the association between IBS and cognitive impairments. Current studies report conflicting results regarding cognitive impairment in IBS patients. We therefore conducted the first systematic review to examine the association between IBS and cognitive impairment and identify the types of cognitive domain involved. ⋯ There is evidence of attentional bias in individuals with IBS; the evidence on cognitive impairment was either inconclusive or insufficient in other cognitive domains. Further studies are needed to confirm prevalence rates and examine potential mechanisms.
-
Alzheimer's disease (AD) is characterized by the classical hallmarks of Aβ-deposition and tau-pathology that are thought to ultimately lead to synapse and neuron loss. Although long known, neuroinflammation has recently attracted a substantial amount of attention by researchers due to genome wide association studies (GWAS) that identified microglia associated genes to be correlated with sporadic AD. Besides that, cholinergic degeneration and gamma-aminobutyric acid (GABA) abnormalities have been identified in the brains of AD patients already decades ago, but have not received much attention over the last ten years. ⋯ In this context, an imbalance between excitation and inhibition has been hypothesized to contribute to neuronal network dysfunction. Here, disturbances of cholinergic and GABAergic transmission might play a crucial role. In this review, we will focus on GABAergic dysfunction in AD and mouse models of AD and how those might relate to neuronal network aberration and memory impairment.
-
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with loss of motor neurons. Previous knowledge of the disease has been mainly based on studies from Caucasian ALS patients of European descent. Here we review the epidemiological characteristics of ALS among the Chinese population in order to compare the similarities and differences between Chinese ALS cases and those from other countries. ⋯ Additionally, we highlight potential genetic differences between Chinese and Caucasian ALS patients. Most notably, the frequency of GGGGCC repeat expansions in C9ORF72 in Chinese ALS is significantly lower than in Caucasians. Since some conclusions might not be consistent across all of the studies around China to date, we suggest that it is necessary to carry out a prospective population-based study and large-scale gene sequencing around to better define epidemiological and genetic features of Chinese ALS patients.
-
Adolescent development is associated with major changes in emotional and cognitive functions, as well as a rise in stress-related psychological disorders such as anxiety and depression. It is also a time of significant maturation of the brain, marked by structural alterations in many limbic and cortical regions. Though many elegant human neuroimaging studies have described the adolescent-related changes in these regions, relatively little is known about these changes in non-human animals. ⋯ As many unanswered questions remain in this area of investigation, potential future lines of research are also discussed. A deeper appreciation of how stress affects adolescent brain development will be needed if we are to gain a better understanding of the mechanisms that mediate the increase in stress-related psychological dysfunctions often observed during this stage of development. This article is part of a Special Issue entitled SI: Adolescent plasticity.
-
The use of therapeutic hypothermia (TH) and targeted temperature management (TTM) for severe traumatic brain injury (TBI) has been tested in a variety of preclinical and clinical situations. Early preclinical studies showed that mild reductions in brain temperature after moderate to severe TBI improved histopathological outcomes and reduced neurological deficits. Investigative studies have also reported that reductions in post-traumatic temperature attenuated multiple secondary injury mechanisms including excitotoxicity, free radical generation, apoptotic cell death, and inflammation. ⋯ Current research involves the evaluation of alternative cooling strategies including pharmacologically-induced hypothermia and the combination of TH or TTM approaches with more selective neuroprotective or reparative treatments. This manuscript summarizes the preclinical and clinical literature emphasizing the importance of brain temperature in modifying secondary injury mechanisms and in improving traumatic outcomes in severely injured patients. This article is part of a Special Issue entitled SI:Brain injury and recovery.