Brain research
-
In the present study, the effects of bilateral injections of N-methyl-d-aspartate (NMDA) receptor agonist and/or antagonist into the central amygdala (CeA) on the acquisition and expression of morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. Animals that received 3 daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg) indicated a significant preference for compartment paired with morphine in a dose dependent manner. Intra-CeA administration of the NMDA (0.01, 0.1 or 1 microg/rat) with an ineffective dose of morphine (1 mg/kg, s.c.) elicited a significant CPP. ⋯ Moreover, intra-CeA injection of NMDA but not MK-801 before testing significantly increased the expression of morphine (6 mg/kg, s.c.)-induced place preference. NMDA or MK-801 injections into the CeA had no effects on locomotor activity on the testing sessions. These results suggest that the NMDA receptor mechanisms in the central amygdala may be involved in the acquisition and expression of morphine-induced place preference.
-
Anxiety has been associated with a bias for interpreting threatening information. Faces expressing anger seem to be more easily detected by socially anxious individuals than by non-anxious individuals. Similarly, disgust on a face may also reflect a negative social judgment. ⋯ More interestingly, participants with non-clinical social anxiety manifested a reduced N2b wave when they had to detect a change in intensity of anger presentation. However, these individuals did not show facilitation to disengage from disgust when they have to detect angry faces, which was displayed by control participants. Implications and suggestions for further research about the role played by anger and disgust in psychopathology are outlined.
-
Calcium-activated potassium channels regulate AHP and excitability in neurons. Since we have previously shown that axotomy decreases I(Ca) in DRG neurons, we investigated the association between I(Ca) and K((Ca)) currents in control medium-sized (30-39 microM) neurons, as well as axotomized L5 or adjacent L4 DRG neurons from hyperalgesic rats following L5 SNL. Currents in response to AP waveform voltage commands were recorded first in Tyrode's solution and sequentially after: 1) blocking Na(+) current with NMDG and TTX; 2) addition of K((Ca)) blockers with a combination of apamin 1 microM, iberiotoxin 200 nM, and clotrimazole 500 nM; 3) blocking remaining K(+) current with the addition of 4-AP, TEA-Cl, and glibenclamide; and 4) blocking I(Ca) with cadmium. In separate experiments, currents were evoked (HP -60 mV, 200 ms square command pulses from -100 to +50 mV) while ensuring high levels of activation of I(K(Ca)) by clamping cytosolic Ca(2+) concentration with pipette solution in which Ca(2+) was buffered to 1 microM. This revealed I(K(Ca)) with components sensitive to apamin, clotrimazole and iberiotoxin. SNL decreases total I(K(Ca)) in axotomized (L5) neurons, but increases total I(K(Ca)) in adjacent (L4) DRG neurons. All I(K(Ca)) subtypes are decreased by axotomy, but iberiotoxin-sensitive and clotrimazole-sensitive current densities are increased in adjacent L4 neurons after SNL. In an additional set of experiments we found that small-sized control DRG neurons also expressed iberiotoxin-sensitive currents, which are reduced in both axotomized (L5) and adjacent (L4) neurons. ⋯ Axotomy decreases I(K(Ca)) due to a direct effect on K((Ca)) channels. Axotomy-induced loss of I(Ca) may further potentiate current reduction. This reduction in I(K(Ca)) may contribute to elevated excitability after axotomy. Adjacent neurons (L4 after SNL) exhibit increased I(K(Ca)) current.
-
Mortality after serious systemic thermal injury may be linked to significant increases in cerebral vascular permeability and edema due to blood-brain barrier (BBB) breakdown. This BBB disruption is thought to be mediated by a family of proteolytic enzymes known as matrix metalloproteinases (MMPs). The gelatinases, MMP-2 and MMP-9, digest the endothelial basal lamina of the BBB, which is essential for maintaining BBB integrity. ⋯ MMP-9 protein levels and enzyme activity began to increase at 7 h and reached significant levels between 7 and 24 h after thermal injury. While MMP-9 protein levels continued to increase significantly through 72 h, enzyme activity returned to control level. The increase in MMP-9 expression and activity, associated with increased BBB permeability following thermal injury, indicates that MMP-9 may contribute to observed cerebral edema in peripheral thermal injury.
-
In the diseased central nervous system, astrogliosis is accompanied by microglial activation. Depending on the context of their activation, reactive astrocytes are involved in neuronal survival and regeneration in an either protective or impedimental way. Major reactive changes of astrocytes in vivo are the upregulation of the intermediate filaments GFAP (glial fibrillary acidic protein) and vimentin with accompanying cellular hypertrophy and/or hyperplasia. ⋯ Nevertheless, LPS-activated microglia stimulated astrocytes as demonstrated by an increased cell number and an enhanced mRNA expression of IL-6. Resting microglia did not change any of the determined parameters. Our results suggest that the role of activated microglia in astrogliotic processes following injury of the brain has to be reevaluated, as microglia in their activated state might support the onset of astrogliosis on the one hand, but might delay or reduce subsequent glial scar formation on the other hand.