Brain research
-
Mortality after serious systemic thermal injury may be linked to significant increases in cerebral vascular permeability and edema due to blood-brain barrier (BBB) breakdown. This BBB disruption is thought to be mediated by a family of proteolytic enzymes known as matrix metalloproteinases (MMPs). The gelatinases, MMP-2 and MMP-9, digest the endothelial basal lamina of the BBB, which is essential for maintaining BBB integrity. ⋯ MMP-9 protein levels and enzyme activity began to increase at 7 h and reached significant levels between 7 and 24 h after thermal injury. While MMP-9 protein levels continued to increase significantly through 72 h, enzyme activity returned to control level. The increase in MMP-9 expression and activity, associated with increased BBB permeability following thermal injury, indicates that MMP-9 may contribute to observed cerebral edema in peripheral thermal injury.
-
alpha2-Adrenoceptor (AR) agonists increase in analgesic potency and efficacy after peripheral nerve injury, and their effects are blocked by neuronal nitric oxide synthase (nNOS) inhibitors and M4 muscarinic receptor antagonists only after injury. We tested whether nNOS and M4 muscarinic receptors are co-expressed in the spinal cord, and whether destruction of a subset of sensory afferents which are essential to alpha2-AR analgesia would also destroy nNOS and M4 receptor expression. Male Sprague-Dawley rats underwent left L5 and L6 spinal nerve ligation. ⋯ In contrast, nNOS staining in dorsal horn neurons was unaltered by these manipulations. M4 receptors were present on neurons in the dorsal horn, some of which co-expressed nNOS, but their pattern of expression was not altered by these manipulations. Peripheral nerve injury increases nNOS expression in fibers in the superficial dorsal horn, some of which likely express p75(NTR), and alpha2-AR agonists may reduce injury-induced sensitization by activation of nNOS in these fibers In contrast, changes in nNOS and M4 receptor location on spinal cord neurons are not responsible for increased analgesic potency of alpha2-AR agonists after nerve injury.
-
The lingual nerve, a peripheral branch of the trigeminal nerve, can be damaged during the surgical removal of lower third molar teeth. This damage can lead to the development of dysaesthesia, with some patients complaining of burning pain. We investigated the hypothesis that vanilloid receptor 1 (TRPV1), a transducer of noxious heat stimuli, was involved in the development of this burning pain. ⋯ Furthermore, there was no correlation between TRPV1 expression and the VAS scores for pain, tingling or discomfort. However, if data from all patients was pooled, there was a negative correlation between the level of TRPV1 expression and the time after initial injury. These data do not rule out involvement of TRPV1 in the aetiology of burning dysaesthesia following lingual nerve injury but suggest that TRPV1 at the injury site does not play a primary role.
-
Hippocampal damage contributes to cognitive dysfunction after traumatic brain injury (TBI). We previously showed that Fluoro-Jade, a fluorescent stain that labels injured, degenerating brain neurons, quantifies the extent of hippocampal injury after experimental fluid percussion TBI in rats. Coincidentally, we observed that injured neurons in the rat hippocampus also stained with Newport Green, a fluorescent dye specific for free ionic zinc. ⋯ Treatment with lamotrigine, which inhibits presynaptic release of glutamate and presumably zinc that is co-localized with glutamate, reduced numbers of Fluoro-Jade-positive and Newport Green-positive neurons equally as did treatment with nicardipine, which blocks voltage-gated calcium channels through which zinc enters neurons. To confirm using molecular techniques that Fluoro-Jade and Newport Green-positive neurons are equivalent populations, we isolated total RNA from 25 Fluoro-Jade-positive and 25 Newport Green-positive pyramidal neurons obtained by laser capture microdissection (LCM) from the CA3 subfield, linearly amplified the mRNA and used quantitative ribonuclease protection analysis to demonstrate similar expression of mRNA for selected TBI-induced genes. Our data suggest that therapeutic interventions aimed at reducing neurotoxic zinc levels after TBI may reduce hippocampal neuronal injury.
-
Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. ⋯ In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.